Although the electron is a quantum object, the classical description of its motion is appropriate for our experimental technique.
Strong-field physics fundamentally depends on high-harmonic generation, which converts optical or near-infrared (NIR) light into the extreme ultraviolet (XUV) regime. In the well-known three-step concept, the driving light field ionizes the electron by tunnel ionization, accelerates it away and back to the ionic core, where the electron recollides and emits XUV light if it recombines.
In this study, physicists replaced the first step with an XUV single-photon ionization, which has a twofold advantage: First, one can choose the ionization time relative to the NIR phase. Second, the NIR laser can be tuned to low intensities where tunnel ionization is practically impossible. This allows us to study strong-field-driven electron recollision in a low-intensity limiting case.