Toggle light / dark theme

Although the electron is a quantum object, the classical description of its motion is appropriate for our experimental technique.

Strong-field physics fundamentally depends on high-harmonic generation, which converts optical or near-infrared (NIR) light into the extreme ultraviolet (XUV) regime. In the well-known three-step concept, the driving light field ionizes the electron by tunnel ionization, accelerates it away and back to the ionic core, where the electron recollides and emits XUV light if it recombines.

In this study, physicists replaced the first step with an XUV single-photon ionization, which has a twofold advantage: First, one can choose the ionization time relative to the NIR phase. Second, the NIR laser can be tuned to low intensities where tunnel ionization is practically impossible. This allows us to study strong-field-driven electron recollision in a low-intensity limiting case.

The interaction between electrons and light is the most fundamental interaction in physics. Scientists from Goethe University Frankfurt performed an experiment in which they observed the Kapitza-Dirac effect for the first time in full temporal resolution.

- Advertisement -

First postulated almost nine decades ago, the Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light. In its original description, the effect is time-independent.

Researchers at EPFL and the Max Planck Institute have incorporated nonlinear optical phenomena into a transmission electron microscope (TEM), which uses electrons for imaging instead of light.

- Advertisement -

Nonlinear optics, the study of unpredictable light behavior in materials, has applications in various fields, from laser development to quantum information science. Integrating nonlinear optics into a TEM enables complex light interactions on a small chip, allowing for the miniaturization of devices in applications such as optical signal processing, telecommunications, sensing, and spectroscopy.

The ultrafast dynamics and interactions of electrons in molecules and solids have long remained hidden from direct observation. For some time now, it has been possible to study these quantum-physical processes—for example, during chemical reactions, the conversion of sunlight into electricity in solar cells and elementary processes in quantum computers—in real time with a temporal resolution of a few femtoseconds (quadrillionths of a second) using two-dimensional electronic spectroscopy (2DES).

However, this technique is highly complex. Consequently, it has only been employed by a handful of research groups worldwide to date. Now a German-Italian team led by Prof. Dr. Christoph Lienau from the University of Oldenburg has discovered a way to significantly simplify the experimental implementation of this procedure. “We hope that 2DES will go from being a methodology for experts to a tool that can be widely used,” explains Lienau.

Two doctoral students from Lienau’s Ultrafast Nano-Optics research group, Daniel Timmer and Daniel Lünemann, played a key role in the discovery of the new method. The team has now published a paper in Optica describing the procedure.

Physicists at the University of Cologne have taken an important step forward in the pursuit of topological quantum computing by demonstrating the first-ever observation of Crossed Andreev Reflection (CAR) in topological insulator (TI) nanowires.

This finding, published under the title “Long-range crossed Andreev reflection in topological insulator nanowires proximitized by a superconductor” in Nature Physics, deepens our understanding of superconducting effects in these materials, which is essential for realizing robust quantum bits (qubits) based on Majorana zero-modes in the TI platform—a major goal of the Cluster of Excellence Matter and Light for Quantum Computing (ML4Q).

Quantum computing promises to revolutionize information processing, but current qubit technologies struggle with maintaining stability and error correction. One of the most promising approaches to overcoming these limitations is the use of topological superconductors, which can host special quantum states called Majorana zero-modes.

Once described by Einstein as “spooky action at a distance,” quantum entanglement may now seem less intimidating in light of new research findings.

Osaka Metropolitan University physicists have developed new, simpler formulas to quantify quantum entanglement in strongly correlated electron systems and applied them to study several . Their results offer fresh perspectives into quantum behaviors in materials with different physical characteristics, contributing to advances in .

The study is published in Physical Review B.