БЛОГ

Archive for the ‘quantum physics’ category: Page 20

Oct 17, 2024

Dr. Leonard Tender, Ph.D. — Biological Technologies Office, DARPA — Next Generation Biomanufacturing

Posted by in categories: biological, chemistry, climatology, engineering, government, policy, quantum physics

Next Generation Biomanufacturing Technologies — Dr. Leonard Tender, Ph.D. — Biological Technologies Office, Defense Advanced Research Projects Agency — DARPA


Dr. Leonard Tender, Ph.D. is a Program Manager in the Biological Technologies Office at DARPA (https://www.darpa.mil/staff/dr-leonar…) where his research interests include developing new methods for user-defined control of biological processes, and climate and supply chain resilience.

Continue reading “Dr. Leonard Tender, Ph.D. — Biological Technologies Office, DARPA — Next Generation Biomanufacturing” »

Oct 17, 2024

Diabolical Nanomagnets

Posted by in categories: nanotechnology, particle physics, quantum physics

A quantum degeneracy named after a Chinese yo-yo boosts the magnetization lifetime of a short chain of magnetic iron atoms by a factor of 1000.

Oct 17, 2024

Building the quantum workforce

Posted by in categories: computing, quantum physics

Engineers, physicists, computer scientists and more are needed for the second quantum revolution.

Oct 17, 2024

Hybrid quantum error correction technique integrates continuous and discrete variables

Posted by in categories: computing, quantum physics

A major challenge in realizing quantum computers is the development of quantum error correction technology. This technology offers a solution for addressing errors that occur in the qubit, the basic unit of quantum computation, and prevents them from being amplified during the computation.

Oct 17, 2024

Researchers reveal quantum advantage that could advance future sensing devices

Posted by in categories: biotech/medical, quantum physics

Researchers from the Department of Energy’s Oak Ridge National Laboratory have taken a major step forward in using quantum mechanics to enhance sensing devices, a new advancement that could be used in a wide range of areas, including materials characterization, improved imaging and biological and medical applications.

Oct 17, 2024

New method to generate photon pairs efficiently on a chip

Posted by in categories: computing, quantum physics

Thin-film lithium niobate is an emerging nonlinear integrated photonics platform ideally suited for quantum applications. Through spontaneous parametric down-conversion (SPDC), it can generate correlated photon pairs for quantum key distribution, teleportation, and computing.

Oct 16, 2024

‘Quantum Memory’ Proves Exponentially Powerful

Posted by in categories: quantum physics, robotics/AI

Quantum memory lets a quantum computer perform a task not necessarily with fewer steps, but with less data. Could this in itself be a way to prove quantum advantage?


The new papers show that quantum memory lets a quantum computer perform a task not necessarily with fewer steps, but with less data. As a result, researchers believe this in itself could be a way to prove quantum advantage. “It allows us to, in the more near term, already achieve that kind of quantum advantage,” said Hsin-Yuan Huang, a physicist at Google Quantum AI.

But researchers are excited about the practical benefits too, as the new results make it easier for researchers to understand complex quantum systems.

Continue reading “‘Quantum Memory’ Proves Exponentially Powerful” »

Oct 16, 2024

Quantum theory is challenging long-standing ideas about entropy

Posted by in categories: mathematics, quantum physics

A mathematical study finds that three definitions of what it means for entropy to increase, which have previously been considered equivalent, can produce different results in the quantum realm.

By Karmela Padavic-Callaghan

Oct 16, 2024

New theoretical framework sets limits for the realization of quantum processes in spacetime

Posted by in category: quantum physics

Bell’s theorem, the well-known theoretical framework introduced by John Bell decades ago, delineates the limits of classical physical processes arising from relativistic causality principles. These are principles rooted in Einstein’s theory of relativity, which dictate how cause and effect operate in the universe.

Oct 16, 2024

Enhanced wavelength conversion paves the way for more efficient quantum information transfer

Posted by in category: quantum physics

Advancements in quantum information technology are paving the way for faster and more efficient data transfer. A key challenge has been ensuring that qubits, the fundamental units of quantum information, can be transferred between different wavelengths without losing their essential properties, such as coherence and entanglement.

Page 20 of 838First1718192021222324Last