БЛОГ

Archive for the ‘quantum physics’ category: Page 218

Nov 29, 2022

Researchers realize long-lived storage of multimode quantum states

Posted by in categories: evolution, quantum physics

Recently, a team led by Prof. Guo Guangcan achieved long-lived storage of high-dimensional orbital angular momentum (OAM) quantum states of photons based on cold atomic ensembles, using a guiding magnetic field combined with clock state preparation. Their work was published in Physical Review Letters.

Previous work has shown that integrating multimode memory into can greatly improve channel capacity, which is crucial for long distance quantum communication. The collective enhancement effect of the cold atomic ensemble makes it an efficient medium for storing photonic information. Although important progress has been made, many problems remain to be solved in long-lived spatial multimode memory based on cold atomic ensembles, one of which is how to achieve for multimode after a long storage time since multiple spatial modes are more easily affected by the surrounding environment.

Based on the degrees of freedom of OAM, the team carried out research on the long-lived storage of high-dimensional multimode quantum states using the cold 85Rb system. In this work, to overcome the effect of inhomogeneous evolution due to the spatial complexity of stored OAM, the team used a guiding to dominate atomic evolution and then employed a pair of magnetically insensitive states to suppress the decoherence in the transverse direction. After the clock states were employed, the between different Zeeman sublevels was eliminated, which consequently extended the lifetime of faithful storage.

Nov 29, 2022

Quantum Annealing Pioneer D-Wave Introduces Expanded Hybrid Solver

Posted by in categories: computing, information science, quantum physics

D-Wave Systems, a pioneer in quantum annealing-based computing, today announced significant upgrades to its constrained quadratic model (CQM) hybrid solver that should make it easier to use and able to tackle much larger problems, said the company. The model can now handle optimization problems with up to 1 million variables (including continuous variables) and 100,000 constraints. In addition, D-Wave has introduced a “new [pre-solver] set of fast classical algorithms that reduces the size of the problem and allows for larger models to be submitted to the hybrid solver.”

While talk of using hybrid quantum-classical solutions has intensified recently among the gate-based quantum computer developer community, D-Wave has actively explored hybrid approaches for use with its quantum annealing computers for some time. It introduced a hybrid solver service (HSS) as part its Leap web access portal and Ocean SDK development kit that D-Wave in 2020. The broad hybrid idea is to use classical compute resources where they make sense – for example, GPUs perform matrix multiplication faster – and use quantum resources where they add benefit.

Continue reading “Quantum Annealing Pioneer D-Wave Introduces Expanded Hybrid Solver” »

Nov 29, 2022

Toward large-scale fault-tolerant universal photonic quantum computing

Posted by in categories: computing, quantum physics

Year 2019 face_with_colon_three


Photonic quantum computing is one of the leading approaches to universal quantum computation. However, large-scale implementation of photonic quantum computing has been hindered by its intrinsic difficulties, such as probabilistic entangling gates for photonic qubits and lack of scalable ways to build photonic circuits. Here, we discuss how to overcome these limitations by taking advantage of two key ideas which have recently emerged. One is a hybrid qubit-continuous variable approach for realizing a deterministic universal gate set for photonic qubits. The other is the time-domain multiplexing technique to perform arbitrarily large-scale quantum computing without changing the configuration of photonic circuits. These ideas together will enable scalable implementation of universal photonic quantum computers in which hardware-efficient error correcting codes can be incorporated. Furthermore, all-optical implementation of such systems can increase the operational bandwidth beyond terahertz in principle, ultimately enabling large-scale fault-tolerant universal quantum computers with ultrahigh operation frequency.

Nov 29, 2022

New Measurements Provide a Glimpse of the Quantum Future

Posted by in categories: computing, internet, quantum physics

A multi-institutional team has created an efficient method for measuring high-dimensional qudits encoded in quantum frequency combs, a kind of photon source, on a single optical chip using already available experimental and computational resources.

Despite the fact that the word “qudit” may appear to be a typo, this less well-known relative of the qubit, or quantum bit, has the ability to carry more data and is more noise-resistant, two crucial characteristics required to enhance the performance of quantum networks, quantum key distribution systems, and eventually the quantum internet.

In contrast to traditional computer bits, which classify data as ones or zeros, qubits can hold values of one, zero, or both. This is due to superposition, a phenomenon that enables several quantum states to exist simultaneously. Qudit’s “d” refers to the variety of levels or values that may be encoded on a photon. Traditional qubits only have two levels, but by adding more levels, they become qudits.

Nov 29, 2022

Dawe Quantum Teleology. How the future affects the preent. The Two State Vector

Posted by in categories: futurism, quantum physics

The two stage vector interpretation of quantum theory apart from attempting to resolve the paradoxes of traditional quantum theory provides a physical basis for teleology and understanding how there is a small probability that future events affect present ones.

Nov 28, 2022

A scalable quantum memory with a lifetime over 2 seconds and integrated error detection

Posted by in categories: computing, particle physics, quantum physics

Quantum memory devices can store data as quantum states instead of binary states, as classical computer memories do. While some existing quantum memory technologies have achieved highly promising results, several challenges will need to be overcome before they can be implemented on a large scale.

Researchers at the AWS Center for Quantum Networking and Harvard University have recently developed a promising capable of error detection and with a lifetime or coherence time (i.e., the time for which a quantum memory can hold a superposition without collapsing) exceeding 2 seconds. This memory, presented in a paper in Science, could pave the way towards the creation of scalable quantum networks.

Quantum networks are systems that can distribute entangled , or qubits, to users who are in different geographic locations. While passing through the networks, qubits are typically encoded as photons (i.e., single particles of light).

Nov 28, 2022

Creating quantum-entangled networks of atomic clocks and accelerometers

Posted by in categories: particle physics, quantum physics

Researchers affiliated with the Q-NEXT quantum research center show how to create quantum-entangled networks of atomic clocks and accelerometers—and they demonstrate the setup’s superior, high-precision performance.

For the first time, scientists have entangled atoms for use as networked , specifically, atomic clocks and accelerometers.

The research team’s experimental setup yielded ultraprecise measurements of time and acceleration. Compared to a similar setup that does not draw on , their time measurements were 3.5 times more precise, and acceleration measurements exhibited 1.2 times greater precision.

Nov 28, 2022

Why is Everettian quantum theory “not in the consensus”?

Posted by in category: quantum physics

At the research workshop on the Many-Worlds Interpretation of Quantum Mechanics at the Center for Quantum Science and Technology, Tel-Aviv University, 18–24 October 2022, Prof Lev Vaidman asked: “Why is the many-worlds interpretation not in the consensus?” This was my answer.

Nov 28, 2022

Spooky entanglement revealed between quantum AI and the BBC

Posted by in categories: quantum physics, robotics/AI

QC: Still not actually useful, but it’s increasingly intriguing.

Nov 28, 2022

Scientists Invent ‘Quantum Watch’, a Mind-Bending New Way to Measure Time

Posted by in categories: innovation, quantum physics

“To our knowledge, the concept of obtaining time fingerprints, and therefore avoiding the need to measure time zero, is completely novel,” Berholts said in an email. She added that the new invention is a watch, not a clock, because “a clock requires keeping track of time” whereas “a watch simply provides the time.”

“The quantum watch provides a fingerprint representing a specific time, and hence only requires interaction when initiating and reading out the time,” she explained. “All other devices require keeping track of time. This differentiation comes from the fact that the quantum watch, unlike all the other clocks, measures times in a different way.”