Toggle light / dark theme

Chip-scale cold atom experiments could unleash the power of quantum science in the field

Cold atom experiments are among the most powerful and precise ways of investigating and measuring the universe and exploring the quantum world. By trapping atoms and exploiting their quantum properties, scientists can discover new states of matter, sense even the faintest of signals, take ultra-precise measurements of time and gravity, and conduct quantum sensing and computing experiments.

Proven quantum advantage: Researchers cut the time for a learning task from 20 million years to 15 minutes

Amid high expectations for quantum technology, a new paper in Science reports a proven quantum advantage. In an experiment, entangled light has allowed researchers to learn a system’s noise with very few measurements.

Researchers at the Technical University of Denmark (DTU) and international partners have demonstrated that entangled light can cut the number of measurements needed to learn the behavior of a complex, noisy quantum system by an enormous factor.

“This is the first proven quantum advantage for a photonic system,” says corresponding author Ulrik Lund Andersen, a professor at DTU Physics. “Knowing that such an advantage is possible with a straightforward optical setup should help others look for areas where this approach would pay off, such as sensing and machine learning.”

Quantum random number generator combines small size and high speed

Researchers have developed a chip-based quantum random number generator that provides high-speed, high-quality operation on a miniaturized platform. This advance could help move quantum random number generators closer to being built directly into everyday devices, where they could strengthen security without sacrificing speed.

Shining a light on dark valleytronics: First direct observation of dark excitons in atomically thin materials

In a world-first, researchers from the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology (OIST) have directly observed the evolution of the elusive dark excitons in atomically thin materials, laying the foundation for new breakthroughs in both classical and quantum information technologies.

Their findings have been published in Nature Communications.

Professor Keshav Dani, head of the unit, says, Dark excitons have great potential as information carriers, because they are inherently less likely to interact with light, and hence less prone to degradation of their quantum properties. However, this invisibility also makes them very challenging to study and manipulate.

A new twist on Heisenberg’s uncertainty principle can sharpen quantum sensors

For almost a century, Heisenberg’s uncertainty principle has stood as one of the defining ideas of quantum physics: a particle’s position and momentum cannot be known at the same time with absolute precision. The more you know about one, the less you know about the other.

In a new study published in Science Advances, our team demonstrates how to work around this restriction, not by breaking physics but by reshaping uncertainty itself.

The result is a breakthrough in the science of measurement that could power a new generation of ultra-precise quantum sensors operating at the scale of atoms.

Key Bottleneck Broken: Quantum Computer Chips Clear Major Manufacturing Hurdle

A startup has proven its silicon quantum chips can be manufactured at scale without losing precision. UNSW Sydney startup Diraq has demonstrated that its quantum chips are not only effective in controlled laboratory conditions but also maintain performance when manufactured in real-world production

Scientist Connected Light And Matter a Century Before Quantum Physics

The Irish mathematician and physicist William Rowan Hamilton, who was born 220 years ago last month, is famous for carving some mathematical graffiti into Dublin’s Broome Bridge in 1843.

But in his lifetime, Hamilton’s reputation rested on work done in the 1820s and early 1830s, when he was still in his twenties. He developed new mathematical tools for studying light rays (or “geometric optics”) and the motion of objects (“mechanics”).

Intriguingly, Hamilton developed his mechanics using an analogy between the path of a light ray and that of a material particle.

SlimeMoldCrypt relies on gloopy living organism’s ever-changing network of tendrils for its dynamic, biological, encryption engine — inventor claims concept is resistant to decryption ‘even by quantum machines’

But treat your physarum polycephalum well, or it could die.

Scientist Connected Light And Matter Century Before Quantum Physics

The Irish mathematician and physicist William Rowan Hamilton, who was born 220 years ago last month, is famous for carving some mathematical graffiti into Dublin’s Broome Bridge in 1843.

But in his lifetime, Hamilton’s reputation rested on work done in the 1820s and early 1830s, when he was still in his twenties. He developed new mathematical tools for studying light rays (or “geometric optics”) and the motion of objects (“mechanics”).

Intriguingly, Hamilton developed his mechanics using an analogy between the path of a light ray and that of a material particle.

/* */