Toggle light / dark theme

NEW MEXICO (KRQE) – The world’s largest integrated quantum computing company announced plans to expand into New Mexico.

Quantinuum’s new location will be a research and development hub aimed at advancing photonics technologies. The company is headquartered in Broomfield, Colorado. “I am thrilled to welcome Quantinuum to New Mexico, launching a new industry for our state that builds on our proud foundation of innovation,” said New Mexico Governor Michelle Lujan Grisham in a news release.

New Mexico To Become Quantum Computer Workforce Hub

Researchers from the University of British Columbia, the University of Washington, and Johns Hopkins University have identified a new class of quantum states in a custom-engineered graphene structure.

Published in Nature, the study reports the discovery of topological electronic crystals in twisted bilayer–trilayer graphene, a system created by introducing a precise rotational twist between stacked two-dimensional materials.

“The starting point for this work is two flakes of graphene, which are made up of carbon atoms arranged in a honeycomb structure. The way electrons hop between the carbon atoms determines the electrical properties of the graphene, which ends up being superficially similar to more common conductors like copper,” said Prof. Joshua Folk, a member of UBC’s Physics and Astronomy Department and the Blusson Quantum Matter Institute (UBC Blusson QMI).

In a new Nature Communications study, scientists have demonstrated the quantum version of the strong Mpemba effect (sME) in a single trapped ion system.

The Mpemba effect is a counterintuitive phenomenon in which—under certain conditions—hotter water cools faster than colder water.

It was first described by Tanzanian high school student Erasto Bartholomeo Mpemba in 1963. However, according to early scientific literature, it was observed much earlier, as far as Aristotelian times.

A team of researchers from the University of Ottawa has developed innovative methods to enhance frequency conversion of terahertz (THz) waves in graphene-based structures, unlocking new potential for faster, more efficient technologies in wireless communication and signal processing.

THz waves, located in the far-infrared region of the electromagnetic spectrum, can be used to perform non-invasive imaging through for security and quality control applications. Additionally, these waves hold great promise for wireless communication.

Advances in THz , which can be used to change the frequency of electromagnetic waves, are essential for the development of high-speed and signal processing systems for 6G technologies and beyond.

Quantum computing researchers at Northwestern University report a new take on quantum compilers helped improve the efficiency and reliability of “chiplet-based” modular quantum computers.

Although it sounds like something that might be in a bag next to the pretzels at your next party, chiplets are, in fact, an intriguing approach to building quantum computers. As we’ll discover later, they are small, modular pieces of a computer processor that are designed to function as a building block for creating larger, more complex chips.

In a recent study posted on arXiv, a team of Northwestern University researchers report their Stratify-Elaborate Quantum Compiler (SEQC) boosts circuit fidelity by up to 36% and speeds up compilation by 2 to 4 times compared to existing tools, addressing critical scalability challenges in this emerging era of chiplet-based quantum systems.