Toggle light / dark theme

New Experiment Brings The Quantum Internet a Step Closer to Reality

While the idea of a quantum internet has a huge amount of potential, getting it hooked up to the regular old internet has its challenges.

Now a new study hints at how existing and future networks could be combined.

An experiment conducted by researchers from Leibniz University Hannover in Germany show how quantum information and the classic 1s and 0s of conventional data could be beamed down the same optical fiber.

Researchers create entangled quantum magnets with protected quantum excitations

Quantum magnets are materials that realize a quantum superposition of magnetic states, bringing quantum phenomena from the microscopic to the macroscopic scale. These materials feature exotic quantum excitations–including fractional excitations where electrons behave as if they were split into many parts–that do not exist anywhere outside of this material.

To manipulate how the atoms behaved inside the quantum material the researchers had assembled, they poked each individual atom with a tiny needle. This technique allows for the accurate probing of qubits at the atomic level. The needle, in reality an atomically sharp metal tip, served to excite the atoms’ local magnetic moment, which resulted in topological excitations with enhanced coherence.

“Topological quantum excitations, such as those realized in the topological quantum magnet we now built, can feature substantial protection against decoherence. Ultimately, the protection offered by these exotic excitations can help us overcome some of the most pressing challenges of currently available qubits,” Lado says.

Novel encoding mechanism unveiled for particle physics

In the development of particle physics, researchers have introduced an innovative particle encoding mechanism that promises to improve how information in particle physics is digitally registered and analyzed. This new method, focusing on the quantum properties of constituent quarks, offers unprecedented scalability and precision. It paves the way for significant advancements in high-energy experiments and simulations.

Quantum Alchemy: Scientists Fuse Light and Sugar To Create New States of Matter

Researchers have developed a technique to trap light within an organic material, forming a hybrid quantum state that gives rise to novel physical and chemical properties.

An international team of researchers led by the University of Ottawa has gone back to the kitchen cupboard to create a recipe that combines organic material and light to create quantum states.

Professor Jean-Michel Ménard, leader of the Ultrafast Terahertz Spectroscopy group at the Faculty of Science, coordinated with Dr. Claudiu Genes at the Max Planck Institute for the Science of Light (Germany), and with Iridian Spectral Technologies (Ottawa) to design a device which can efficiently modify properties of materials using the quantum superposition with light.

Manipulation of nanolight provides new insight for quantum computing and thermal management

A recent study led by University of Minnesota Twin Cities researchers provides fundamental insight into how light, electrons, and crystal vibrations interact in materials. The research has implications for developing on-chip architectures for quantum information processing, significantly reducing fabrication constraints, and thermal management.

India edges past the UK in critical technologies research; IIT Bombay, Roorkee top performers

India has edged past the United Kingdom by delivering more cutting-edge critical technology research during the period between 2019 and 2023, data published by the Australian Strategic Policy Institute on Wednesday (August 28) showed.

The institute updated its critical technology tracker this week by focusing on high-impact research or 10 per cent of the most highly cited papers, as a “leading indicator of a country’s research performance, strategic intent, and potential future science and technology capability”

The tracker covers 64 critical technologies and crucial fields spanning defence, space, energy, the environment, artificial intelligence (AI), biotechnology, robotics, cyber, computing, advanced materials, and key quantum technology areas.

Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide

The tin-vacancy center in diamond has properties that could be useful for quantum networks.

In a new study, researchers show how this defect’s electron spin can be controlled — and coherence prolonged — using a superconducting microwave waveguide.


Even the most pristine diamonds can host defects arising from missing atoms (vacancies) or naturally occurring impurities. These defects possess atomlike properties such as charge and spin, which can be accessed optically or magnetically. Over the past few decades, researchers have studied various defects to understand and harness these properties. One in particular—the tin-vacancy center, in which a tin atom resides on an interstitial site with two neighboring vacancies—exhibits exceptionally useful optical and spin properties, making it highly relevant in the field of quantum communication. Here, we explore how the spin properties behave under different magnetic field directions.

We demonstrate that manipulating electron spins is more straightforward in strained diamonds, as the electron spin is more responsive to an alternating magnetic field. We use superconductors known for generating no heat when a current flows through them, ensuring that we do not negatively affect the spin properties.

Through our simple fabrication steps, we illustrate how the properties of the tin-vacancy center can be fully utilized to advance the field of quantum computing and communication.

/* */