Toggle light / dark theme

Karmela Padavic-Callaghan

Karmela Padavic-Callaghan is a science writer reporting on physics, materials science and quantum technology. Karmela earned a PhD in theoretical condensed matter physics and atomic, molecular and optical physics from the University of Illinois Urbana-Champaign. Their research has been published in peer-reviewed journals, including Physical Review Letters and New Journal of Physics.

They studied ultracold atomic systems in novel geometries in microgravity and the interplay of disorder and quasiperiodicity in one-dimensional systems, including metamaterials. During their doctoral training, they also participated in several art-based projects, including co-developing a course on physics and art and serving as a production manager for a devised theatre piece titled Quantum Voyages.

Before joining New Scientist, Karmela was an assistant professor at Bard High School Early College in New York City, where they taught high school and college courses in physics and mathematics. Karmela’s freelance writing has been featured in Wired, Scientific American, Slate, MIT Technology Review, Quanta Magazine and Physics World.

3 Companies Already Working on the Next Phase of Artificial Intelligence (AI)

These businesses are building tech that could exceed the abilities of today’s AI.

The field of artificial intelligence is still in its early years, yet several businesses are already working on technology that can become the foundation for AI’s future. These companies are developing quantum computing systems capable of processing mountains of data in seconds, which would take decades for a conventional computer.

Quantum machines can execute multiple computations simultaneously, accelerating processing time, while typical computers must process data in a linear fashion. This means quantum systems can evolve AI beyond the abilities of the most powerful supercomputers, enabling AI to drive cars and help find cures to diseases.

Bizarre device uses ‘blind quantum computing’ to let you access quantum computers from home

Researchers have developed a new communication paradigm that can let them securely connect a PC to a quantum computer over the internet.

Known as “blind quantum computing,” the technique uses a fiber-optic cable to connect a quantum computer with a photon-detecting device and uses quantum memory — the equivalent of conventional computing memory for quantum computers. This device is connected directly to a PC, which can then perform operations on the quantum computer remotely. The details were outlined in a new study published April 10 in the journal Physical Review Letters.

Breaking Light Speed: The Quantum Tunneling Enigma

In an amazing phenomenon of quantum physics known as tunneling, particles appear to move faster than the speed of light. However, physicists from Darmstadt believe that the time it takes for particles to tunnel has been measured incorrectly until now. They propose a new method to stop the speed of quantum particles.

In classical physics, there are strict laws that cannot be circumvented. For instance, if a rolling ball lacks sufficient energy, it will not get over a hill; instead, it will roll back down before reaching the peak. In quantum physics, this principle is not quite so strict. Here, a particle may pass a barrier, even if it does not have enough energy to go over it. It acts as if it is slipping through a tunnel, which is why the phenomenon is also known as “quantum tunneling.” Far from mere theoretical magic, this phenomenon has practical applications, such as in the operation of flash memory drives.

Quantum Tunneling and Relativity.

Evolutionary Emergence: From Primordial Atoms to Living Algorithms of Artificial Superintelligence

To be clear, humans are not the pinnacle of evolution. We are confronted with difficult choices and cannot sustain our current trajectory. No rational person can expect the human population to continue its parabolic growth of the last 200 years, along with an ever-increasing rate of natural resource extraction. This is socio-economically unsustainable. While space colonization might offer temporary relief, it won’t resolve the underlying issues. If we are to preserve our blue planet and ensure the survival and flourishing of our human-machine civilization, humans must merge with synthetic intelligence, transcend our biological limitations, and eventually evolve into superintelligent beings, independent of material substrates—advanced informational beings, or ‘infomorphs.’ In time, we will shed the human condition and upload humanity into a meticulously engineered inner cosmos of our own creation.

Much like the origin of the Universe, the nature of consciousness may appear to be a philosophical enigma that remains perpetually elusive within the current scientific paradigm. However, I emphasize the term “current.” These issues are not beyond the reach of alternative investigative methods, ones that the next scientific paradigm will inevitably incorporate with the arrival of Artificial Superintelligence.

The era of traditional, human-centric theoretical modeling and problem-solving—developing hypotheses, uncovering principles, and validating them through deduction, logic, and repeatable experimentation—may be nearing the end. A confluence of factors—Big Data, algorithms, and computational resources—are steering us towards a new type of discovery, one that transcends the limitations of human-like logic and decision-making— the one driven solely by AI superintelligence, nestled in quantum neo-empiricism and a fluidity of solutions. These novel scientific methodologies may encompass, but are not limited to, computing supercomplex abstractions, creating simulated realities, and manipulating matter-energy and the space-time continuum itself.