БЛОГ

Archive for the ‘quantum physics’ category: Page 259

Jan 19, 2022

Quantum zeta epiphany: Physicist finds a new approach to a $1 million mathematical enigma

Posted by in categories: mathematics, quantum physics

Numbers like π, e and φ often turn up in unexpected places in science and mathematics. Pascal’s triangle and the Fibonacci sequence also seem inexplicably widespread in nature. Then there’s the Riemann zeta function, a deceptively straightforward function that has perplexed mathematicians since the 19th century. The most famous quandary, the Riemann hypothesis, is perhaps the greatest unsolved question in mathematics, with the Clay Mathematics Institute offering a $1 million prize for a correct proof.

UC Santa Barbara physicist Grant Remmen believes he has a new approach for exploring the quirks of the function. He has found an analog that translates many of the function’s important properties into . This means that researchers can now leverage the tools from this field of physics to investigate the enigmatic and oddly ubiquitous zeta function. His work could even lead to a proof of the Riemann hypothesis. Remmen lays out his approach in the journalPhysical Review Letters.

“The Riemann zeta function is this famous and mysterious mathematical function that comes up in number theory all over the place,” said Remmen, a postdoctoral scholar at UCSB’s Kavli Institute for Theoretical Physics. “It’s been studied for over 150 years.”

Jan 19, 2022

Arduino Meets Quantum Computer

Posted by in categories: computing, internet, quantum physics

| Hackaday


Quantum computers aren’t quite ready for the home lab, but since there are ways to connect to some over the Internet, you can experiment with them more easily than you might think. [Norbert] decided to interface a giant quantum computer to an ordinary Arduino. Why? Well, that isn’t necessarily clear, but then again, why not? He explains basic quantum computing and shows his setup in the video below.

Continue reading “Arduino Meets Quantum Computer” »

Jan 18, 2022

D-Wave increases European presence with quantum computer in Germany

Posted by in categories: computing, quantum physics

D-Wave Systems is ramping up in the race to so-called quantum supremacy — the bid to become the first to successfully commercialize quantum computing.

Jan 18, 2022

Magnetic Surprise Revealed in “Magic-Angle” Graphene — Potential Quantum Computing Applications

Posted by in categories: computing, nanotechnology, quantum physics

Magnets and superconductors don’t normally get along, but a new study shows that ‘magic-angle’ graphene is capable of producing both superconductivity and ferromagnetism, which could be useful in quantum computing.

When two sheets of the carbon nanomaterial graphene are stacked together at a particular angle with respect to each other, it gives rise to some fascinating physics. For instance, when this so-called “magic-angle graphene” is cooled to near absolute zero 0, it suddenly becomes a superconductor, meaning it conducts electricity with zero resistance.

Now, a research team from Brown University has found a surprising new phenomenon that can arise in magic-angle graphene. In research published in the journal Science, the team showed that by inducing a phenomenon known as spin-orbit coupling, magic-angle graphene becomes a powerful ferromagnet.

Jan 17, 2022

Building a silicon quantum computer chip atom

Posted by in categories: computing, engineering, particle physics, quantum physics

A University of Melbourne-led team has perfected a technique for embedding single atoms in a silicon wafer one-by-one. Their technology offers the potential to make quantum computers using the same methods that have given us cheap and reliable conventional devices containing billions of transistors.

“We could ‘hear’ the electronic click as each atom dropped into one of 10,000 sites in our prototype device. Our vision is to use this technique to build a very, very large-scale quantum device,” says Professor David Jamieson of The University of Melbourne, lead author of the Advanced Materials paper describing the process.

Continue reading “Building a silicon quantum computer chip atom” »

Jan 17, 2022

Toward superior nanoscale sensing and imaging with optimized diamond probes

Posted by in categories: biological, nanotechnology, particle physics, quantum physics

From the discovery of microorganisms in the field of biology to imaging atoms in the field of physics, microscopic imaging has improved our understanding of the world and has been responsible for many scientific advances. Now, with the advent of spintronics and miniature magnetic devices, there is a growing need for imaging at nanometer scales to detect quantum properties of matter, such as electron spins, magnetic domain structure in ferromagnets, and magnetic vortices in superconductors.

Typically, this is done by complementing standard microscopy techniques, such as scanning tunneling microscopy and (AFM), with magnetic sensors to create “scanning magnetometry probes” that can achieve nanoscale imaging and sensing. However, these probes often require ultrahigh vacuum conditions, extremely low temperatures, and are limited in spatial resolution by the probe size.

In this regard, nitrogen-vacancy (NV) centers in diamond (defects in diamond structure formed by nitrogen atoms adjacent to “vacancies” created by missing atoms) have gained significant interest. The NV pair, it turns out, can be combined with AFM to accomplish local magnetic imaging and can operate at room temperature and pressures. However, fabricating these probes involve complex techniques that do not allow for much control over the probe shape and size.

Jan 17, 2022

We Are One Step Closer to Incredibly Compact, Powerful Quantum Batteries

Posted by in categories: computing, quantum physics

The bigger a quantum battery, the faster it charges.

Quantum batteries have the potential to store energy in a new class of compact, powerful devices that could boost our uptake of renewable energies and massively reduce our reliance on fossil fuels.

Now, an international group of scientists has taken an important step towards making these batteries a reality. According to a press statement from the University of Adelaide, the team has proved the crucial concept of superabsorption for the first time.

Continue reading “We Are One Step Closer to Incredibly Compact, Powerful Quantum Batteries” »

Jan 17, 2022

New Silicon Carbide Qubits Bring Us One Step Closer to Quantum Networks

Posted by in categories: quantum physics, supercomputing

Chromium defects in silicon carbide may provide a new platform for quantum information.

Quantum computers may be able to solve science problems that are impossible for today’s fastest conventional supercomputers. Quantum sensors may be able to measure signals that cannot be measured by today’s most sensitive sensors. Quantum bits (qubits) are the building blocks for these devices. Scientists are investigating several quantum systems for quantum computing and sensing applications. One system, spin qubits, is based on the control of the orientation of an electron’s spin at the sites of defects in the semiconductor materials that make up qubits. Defects can include small amounts of materials that are different from the main material a semiconductor is made of. Researchers recently demonstrated how to make high quality spin qubits based on chromium defects in silicon carbide.

Jan 17, 2022

Newly Discovered Type of “Strange Metal” — Material That Shares Fundamental Quantum Attributes With Black Holes

Posted by in categories: cosmology, quantum physics

A new discovery could help scientists to understand “strange metals,” a class of materials that are related to high-temperature superconductors and share fundamental quantum attributes with black holes.

Scientists understand quite well how temperature affects electrical conductance in most everyday metals like copper or silver. But in recent years, researchers have turned their attention to a class of materials that do not seem to follow the traditional electrical rules. Understanding these so-called “strange metals” could provide fundamental insights into the quantum world, and potentially help scientists understand strange phenomena like high-temperature superconductivity.

Now, a research team co-led by a Brown University physicist has added a new discovery to the strange metal mix. In research published in the journal Nature, the team found strange metal behavior in a material in which electrical charge is carried not by electrons, but by more “wave-like” entities called Cooper pairs.

Jan 15, 2022

Innovative New Algorithms Advance the Computing Power of Early-Stage Quantum Computers

Posted by in categories: chemistry, computing, information science, quantum physics

A group of scientists at the U.S. Department of Energy’s Ames Laboratory has developed computational quantum algorithms that are capable of efficient and highly accurate simulations of static and dynamic properties of quantum systems. The algorithms are valuable tools to gain greater insight into the physics and chemistry of complex materials, and they are specifically designed to work on existing and near-future quantum computers.

Scientist Yong-Xin Yao and his research partners at Ames Lab use the power of advanced computers to speed discovery in condensed matter physics, modeling incredibly complex quantum mechanics and how they change over ultra-fast timescales. Current high performance computers can model the properties of very simple, small quantum systems, but larger or more complex systems rapidly expand the number of calculations a computer must perform to arrive at an accurate model, slowing the pace not only of computation, but also discovery.

“This is a real challenge given the current early-stage of existing quantum computing capabilities,” said Yao, “but it is also a very promising opportunity, since these calculations overwhelm classical computer systems, or take far too long to provide timely answers.”