БЛОГ

Archive for the ‘quantum physics’ category: Page 275

Nov 22, 2021

Don’t fall for quantum hype

Posted by in categories: computing, internet, quantum physics

Check out the physics courses that I mentioned (many of which are free!) and support this channel by going to https://brilliant.org/Sabine/ where you can create your Brilliant account. The first 200 will get 20% off the annual premium subscription.

What are the quantum technologies that are now attracting so much research funding? In this video I go through the most important ones: quantum computing, quantum metrology, the quantum internet, and quantum simulations. I explain what these are all about and how likely they are to impact our lives soon. I also tell you what frequently headline blunders to watch out for.

Continue reading “Don’t fall for quantum hype” »

Nov 22, 2021

Exotic New Material Could Be Two Superconductors in One — With Serious Quantum Computing Applications

Posted by in categories: computing, particle physics, quantum physics

Work has potential applications in quantum computing, and introduces new way to plumb the secrets of superconductivity. MIT physicists and colleagues have demonstrated an exotic form of superconductivity in a new material the team synthesized only about a year ago. Although predicted in the 1960s.


“An important theme of our research is that new physics comes from new materials,” says Joseph Checkelsky, lead principal investigator of the work and the Mitsui Career Development Associate Professor of Physics. “Our initial report last year was of this new material. This new work reports the new physics.”

Checkelsky’s co-authors on the current paper include lead author Aravind Devarakonda PhD ’21, who is now at Columbia University. The work was a central part of Devarakonda’s thesis. Co-authors are Takehito Suzuki, a former research scientist at MIT now at Toho University in Japan; Shiang Fang, a postdoc in the MIT Department of Physics; Junbo Zhu, an MIT graduate student in physics; David Graf of the National High Magnetic Field Laboratory; Markus Kriener of the RIKEN Center for Emergent Matter Science in Japan; Liang Fu, an MIT associate professor of physics; and Efthimios Kaxiras of Harvard University.

Continue reading “Exotic New Material Could Be Two Superconductors in One — With Serious Quantum Computing Applications” »

Nov 22, 2021

“Electron family” state of matter hints at new type of superconductivity

Posted by in categories: particle physics, quantum physics

Superconductivity occurs when electrons in a metal pair up and move through the material without resistance. But there may be more to the story than we thought, as scientists in Germany have now discovered that electrons can also group together into families of four, creating a new state of matter and, potentially, a new type of superconductivity.

Conductivity is a measure of how easily electrons (and therefore electricity) can move through a material. But even in materials that make good conductors, like gold, electrons will still encounter some resistance. Superconductors, however, remove all such barriers and provide zero resistance at ultracold temperatures.

The reason electrons can move through superconductors so easily is because they pair up through a quantum effect known as Cooper pairing. In doing so, they raise the minimum amount of energy it takes to interfere with the electrons – and if the material is cold enough, its atoms won’t have enough thermal energy to disturb these Cooper pairs, allowing the electrons to flow freely with no loss of energy.

Nov 21, 2021

Entanglement Theory may Reveal a Reality we can’t Handle

Posted by in categories: particle physics, quantum physics

What is entanglement theory? It is a Mystery, and here is a potential solution. But its implications are so paradigm shattering that most scientists refuse to believe it. Maybe we can’t handle the truth?

Imagine you found a pair of dice such that no matter how you tossed them, they always added up to 7. Besides becoming the richest man in Vegas, what you would have there is something called an entangled pair of dice.

Continue reading “Entanglement Theory may Reveal a Reality we can’t Handle” »

Nov 21, 2021

You don’t have free will, but don’t worry

Posted by in categories: ethics, neuroscience, quantum physics

In this video I explain why free will is incompatible with the currently known laws of nature and why the idea makes no sense anyway. However, you don’t need free will to act responsibly and to live a happy life, and I will tell you why.

Support me on Patreon: https://www.patreon.com/Sabine.

Continue reading “You don’t have free will, but don’t worry” »

Nov 21, 2021

First quantum computer to pack 100 qubits enters crowded race

Posted by in categories: computing, quantum physics

But IBM’s latest quantum chip and its competitors face a long path towards making the machines useful.

Nov 21, 2021

How Did the First Atom Form? Where did it come from? | Big Bang Nucleosynthesis

Posted by in categories: cosmology, particle physics, quantum physics

Special offer for ArvinAsh viewers — Go to: https://brilliant.org/arvinash — you can sign up for free! The first 200 people will get 20% off their annual membership.

Background videos:
Fundamental forces: https://youtu.be/669QUJrF4u0
Electroweak theory: https://youtu.be/u05VK0pSc7I
Is Big Bang hidden in gravity waves: https://youtu.be/VXr1mzY2GnY
Cosmic Microwave background: https://youtu.be/XcXCrFIivyk.

Continue reading “How Did the First Atom Form? Where did it come from? | Big Bang Nucleosynthesis” »

Nov 21, 2021

Magnetene — A Graphene-Like 2D Material — Leverages Quantum Effects To Achieve Ultra-Low Friction

Posted by in categories: engineering, particle physics, quantum physics

Magnetene could have useful applications as a lubricant in implantable devices or other micro-electro-mechanical systems.

A team of researchers from University of Toronto Engineering and Rice University have reported the first measurements of the ultra-low-friction behaviour of a material known as magnetene. The results point the way toward strategies for designing similar low-friction materials for use in a variety of fields, including tiny, implantable devices.

Magnetene is a 2D material, meaning it is composed of a single layer of atoms. In this respect, it is similar to graphene 0, a material that has been studied intensively for its unusual properties — including ultra-low friction — since its discovery in 2004.

Nov 20, 2021

Magnetene: Graphene-like 2D material leverages quantum effects to achieve ultra-low friction

Posted by in categories: engineering, quantum physics

A team of researchers from University of Toronto Engineering and Rice University have reported the first measurements of the ultra-low-friction behavior of a material known as magnetene. The results point the way toward strategies for designing similar low-friction materials for use in a variety of fields, including tiny, implantable devices.

Nov 20, 2021

Modeling quantum spin liquids using machine learning

Posted by in categories: particle physics, quantum physics, robotics/AI

The properties of a complex and exotic state of a quantum material can be predicted using a machine learning method created by a RIKEN researcher and a collaborator. This advance could aid the development of future quantum computers.

We have all faced the agonizing challenge of choosing between two equally good (or bad) options. This frustration is also felt by when they feel two competing forces in a special type of quantum system.

In some magnets, particle spins—visualized as the axis about which a particle rotates—are all forced to align, whereas in others they must alternate in direction. But in a small number of materials, these tendencies to align or counter-align compete, leading to so-called frustrated magnetism. This frustration means that the spin fluctuates between directions, even at absolute zero temperature where one would expect stability. This creates an exotic state of matter known as a .