БЛОГ

Archive for the ‘quantum physics’ category: Page 382

Jun 10, 2020

Acoustics put a fresh spin on electron transitions

Posted by in categories: electronics, quantum physics

Electrons are very much at the mercy of magnetic fields, which scientists can manipulate to control the electrons and their angular momentum—i.e. their “spin.”

A Cornell team led by Greg Fuchs, assistant professor of applied and engineering physics in the College of Engineering, in 2013 invented a new way to exert this control by using acoustic waves generated by mechanical resonators. That approach enabled the team to control electron spin transitions (also known as spin resonance) that otherwise wouldn’t be possible through conventional magnetic behavior.

The finding was a boon for anyone looking to build quantum sensors of the sort used in mobile navigation devices. However, such devices still required a magnetic control field—and therefore a bulky magnetic antenna—to drive certain spin transitions.

Jun 10, 2020

IBM Director: Get Ready For Quantum Computing App Stores

Posted by in categories: computing, quantum physics, robotics/AI

Plug And Play

The underlying mechanics of a quantum computer won’t be any less difficult to comprehend under Gil’s vision of the future. But, he argues, it won’t matter because programming quantum computing software would become far more automated along the way.

“You’ll simply have to write a line of code in any programming language you work with,” Gil wrote, “and the system will match it with the circuit in the library and the right quantum computer.”

Jun 10, 2020

A route to the directional control of light–matter interactions at the nanoscale

Posted by in categories: computing, mobile phones, nanotechnology, quantum physics

Mobile phones and computers are currently responsible for up to 8% of the electricity use in the world. This figure has been doubling each past decade but nothing prevents it from skyrocketing in the future. Unless we find a way for boosting energy efficiency in information and communications technology, that is. An international team of researchers, including Ikerbasque Research Associate Alexey Nikitin (DIPC), has just published in Nature 1 a breakthrough in quantum physics that could deliver exactly that: electronics and communications technology with ultralow energy consumption.

Future information and communication technologies will rely on the manipulation of not only electrons but also of light at the nanometer-scale. Squeezing light to such a small size has been a major goal in nanophotonics for many years. Particularly strong light squeezing can be achieved with polaritons, quasiparticles resulting from the strong coupling of photons with a dipole-carrying excitation, at infrared frequencies in two-dimensional materials, such as graphene and hexagonal boron nitride. Polaritons can be found in materials consisting of two-dimensional layers bound by weak van der Waals forces, the so-called van der Waals materials. These polaritons can be tuned by electric fields or by adjusting the material thickness, leading to applications including nanolasers, tunable infrared and terahertz detectors, and molecular sensors.

But there is a major problem: even though polaritons can have long lifetimes, they have always been found to propagate along all directions (isotropic) of the material surface, thereby losing energy quite fast, which limits their application potential.

Jun 10, 2020

The Quantum App Store Is Coming

Posted by in categories: computing, quantum physics

Quantum computing is still the province of specialized programmers—but that is likely to change very quickly.

Jun 9, 2020

Scientists Apply Revolutionary 30 Year-Old Principle and Find Black Holes Could Be Like Holograms

Posted by in categories: cosmology, holograms, quantum physics

According to new research, black holes could be like a hologram, where all the information is amassed in a two-dimensional surface able to reproduce a three-dimensional image.

We can all picture that incredible image of a black hole that traveled around the world about a year ago. Yet, according to new research by SISSA, ICTP and INFN, black holes could be like a hologram, where all the information is amassed in a two-dimensional surface able to reproduce a three-dimensional image. In this way, these cosmic bodies, as affirmed by quantum theories, could be incredibly complex and concentrate an enormous amount of information inside themselves, as the largest hard disk that exists in nature, in two dimensions. This idea aligns with Einstein’s theory of relativity, which describes black holes as three dimensional, simple, spherical, and smooth, as they appear in that famous image. In short, black holes “appear” as three dimensional, just like holograms. The study which demonstrates it, and which unites two discordant theories, has recently been published in Physical Review X.

The mystery of black holes.

Jun 9, 2020

Cyberattack Shuts Down All Honda Factories Worldwide

Posted by in categories: cybercrime/malcode, quantum physics

Quantum computers could keep it secure like the dwave.


By now, the company is mostly back online.

Jun 9, 2020

‘Whispering Gallery’ Effect Allows Light to Be Stored and Controls Electron Beams

Posted by in category: quantum physics

Artist’s view of individual electrons interacting with an optical whispering gallery mode as it circles a silica sphere. The matching between the velocities of the electron and the light-wave it is riding changes the quantum state of the electron, illustrated as a wider halo. Credit: Dr. Murat Sivis.

Jun 8, 2020

Samsung and SK Telecom reveal world’s first smartphone with quantum security tech

Posted by in categories: cybercrime/malcode, mobile phones, quantum physics

The Quantum Random Number Generator makes it much harder to hack some services.

Jun 8, 2020

Physicists think they’ve figured out a way to save Schrödinger’s cat

Posted by in categories: particle physics, quantum physics

The famous cat-in-a-box thought experiment by Austrian physicist Erwin Schrödinger is an illustration of one of the defining characteristics of quantum mechanics — the unpredictable behaviour of particles at the quantum level.

It makes working with quantum systems incredibly difficult; but what if we could make quantum predictions? A team of physicists believes it’s possible.

In a study published last year, they demonstrated their ability to predict something called a quantum jump, and even reverse the process after it’s started.

Jun 8, 2020

Physicists entangle 15 trillion hot atoms

Posted by in categories: computing, cosmology, encryption, quantum physics

Physicists set a new record by linking together a hot soup of 15 trillion atoms in a bizarre phenomenon called quantum entanglement. The finding could be a major breakthrough for creating more accurate sensors to detect ripples in space-time called gravitational waves or even the elusive dark matter thought to pervade the universe.

Entanglement, a quantum phenomena Albert Einstein famously described as “spooky action at a distance,” is a process in which two or more particles become linked and any action performed on one instantaneously affects the others regardless of how far apart they are. Entanglement lies at the heart of many emerging technologies, such as quantum computing and cryptography.