БЛОГ

Archive for the ‘quantum physics’ category: Page 397

Apr 14, 2020

New electronic cooling technology to enable miniaturization of quantum computers

Posted by in categories: computing, quantum physics, security

VTT researchers have successfully demonstrated a new electronic refrigeration technology that could enable major leaps in the development of quantum computers. Present quantum computers require extremely complicated and large cooling infrastructure that is based on mixture of isotopes of helium. The new electronic cooling technology could replace these cryogenic liquid mixtures and enable miniaturization of quantum computers.

In this purely electrical refrigeration method, and thermal isolation operate effectively through the same point like junction. In the experiment the researchers suspended a piece of silicon from such junctions and refrigerated the object by feeding electrical current from one junction to another through the piece. The current lowered the thermodynamic temperature of the silicon object as much as 40% from that of the surroundings. This could lead to the miniaturization of future quantum computers, as it can simplify the required cooling infrastructure significantly. The discovery has been published in Science Advances.

“We expect that this newly discovered electronic cooling method could be used in several applications from the miniaturization of quantum computers to ultra-sensitive radiation sensors of the security field,” says Research Professor Mika Prunnila from VTT Technical Research Centre of Finland.

Apr 14, 2020

Higgs turning up everywhere, this time in paint

Posted by in categories: particle physics, quantum physics

:oooo circa 2009.


The portrait of Peter Higgs is on display at the University of Edinburgh’s School of Informatics. Photograph: Ken Currie.

It seems that Peter Higgs, despite his known aversion to publicity is turning up everywhere. Of course the potential discovery of the particle in the next few years by either/both of the Large Hadron Collider at CERN and the Tevatron at Fermilab is bringing a lot more attention to him, and a little to the other theorists, such as Guralnik, Hagen, Kibble, Brout, and Englert, who also developed the ideas behind a mass-giving spontaneously symmetry broken quantum field and its manifestation as a particle, now known as the Higgs boson. (Yep, that sounds scary because it gets technical.)

Continue reading “Higgs turning up everywhere, this time in paint” »

Apr 14, 2020

Trapped ytterbium ions could form backbone of a quantum internet, say researchers

Posted by in categories: internet, quantum physics

Ions trapped nanoscale optical cavities could be used to distribute entangled quantum particles over large distances. That is the conclusion of Jonathan Kindem and colleagues at Caltech in the US, who showed that a trapped ion of ytterbium can remain entangled with a photon for long periods of time. Furthermore, the team showed that the ion’s quantum state can be read out when manipulated by laser and microwave pulses. Their achievement could lay the foundations for a future quantum internet.

Quantum computers are becoming a reality as research labs and companies roll out nascent devices. An important next step in this quantum revolution is creating a “quantum internet” across which quantum information can be shared. The delicate nature of quantum information, however, means that it is very difficult to connect quantum computers over long distances.

Most quantum computers encode quantum bits (qubits) of information into the quantum states of matter – trapped atoms or superconducting circuits, for example. However, the best way to transmit quantum information over long distances is to encode it into a photon of light. An important challenge is how to transfer quantum information from stationary matter-based qubits to photon-based “flying” qubits and then back again.

Apr 14, 2020

Engineers Unveil First Casimir Chip That Exploits The Vacuum Energy

Posted by in categories: computing, cosmology, quantum physics

Could be made into a generator of some kind :3.


One of the strangest effects to arise from the quantum nature of the universe is the Casimir force. This pushes two parallel conducting plates together when they are just a few dozen nanometres apart.

At these kinds of scales, the Casimir force can dominate and engineers are well aware of its unwanted effects. One reason why microelectromechanical machines have never reached their original promise is the stiction that Casimir forces can generate.

Continue reading “Engineers Unveil First Casimir Chip That Exploits The Vacuum Energy” »

Apr 13, 2020

Quantum computation solves an old enigma: Finding the vibrational states of magnesium dimer

Posted by in categories: chemistry, energy, quantum physics

High vibrational states of the Magnesium dimer (Mg2) are an important system in studies of fundamental physics, although they have eluded experimental characterization for half a century. Experimental physicists have so far resolved the first 14 vibrational states of Mg2, despite reports that the ground-state may support five additional levels. In a new report, Stephen H. Yuwono and a research team in the departments of physics and chemistry at the Michigan State University, U.S., presented highly accurate initial potential energy curves for the ground and excited electron states of Mg2. They centered the experimental investigations on calculations of state-of-the-art coupled-cluster (CC) and full configuration interaction computations of the Mg2 dimer. The ground-state potential confirmed the existence of 19 vibrational states with minimal deviation between previously calculated rovibrational values and experimentally derived data. The computations are now published on Science Advances and provide guidance to experimentally detect previously unresolved vibrational levels.

Background

Weakly bound alkaline-earth (AE2) dimers can function as probes of fundamental physics phenomena, such as ultracold collisions, doped helium nanodroplets, binary reactions and even optical lattice clocks and quantum gravity. The magnesium dimer is important for such applications since it has several desirable characteristics including nontoxicity and an absence of hyperfine structure in the most abundant 24 Mg isotope that typically facilitates the analysis of binary collisions and other quantum phenomena. However, the status of Mg2 as a prototype heavier AE2 species is complicated since scientists have not been able to experimentally characterize its high vibrational levels and ground-state potential energy curve (PEC) for so long.

Apr 13, 2020

Closing in on ‘holy grail’ of room temperature quantum computing chips

Posted by in categories: computing, engineering, nanotechnology, quantum physics

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the other. Now, researchers at Stevens Institute of Technology have coaxed photons into interacting with one another with unprecedented efficiency — a key advance toward realizing long-awaited quantum optics technologies for computing, communication and remote sensing.

The team, led by Yuping Huang, an associate professor of physics and director of the Center for Quantum Science and Engineering, brings us closer to that goal with a nano-scale chip that facilitates photon interactions with much higher efficiency than any previous system. The new method, reported as a memorandum in the Sept. 18 issue of Optica, works at very low energy levels, suggesting that it could be optimized to work at the level of individual photons — the holy grail for room-temperature quantum computing and secure quantum communication.

“We’re pushing the boundaries of physics and optical engineering in order to bring quantum and all-optical signal processing closer to reality,” said Huang.

Apr 13, 2020

Programming a Quantum Computer

Posted by in categories: quantum physics, robotics/AI

It is a common misconception that quantum computers are not yet ready for applications and the technology still has many years before becoming useful. In this article we will take a look at some of the basic principles of programming a quantum computer and address this misconception. We will look at free, open-source software such as QISKit from IBM, as well as the Quantum Machine Learning software PennyLane. We will also explain how you can run your programs on actual quantum computers in the cloud at IBM. In a follow-up article we will talk about some applications in machine learning that are ready for use currently to anyone with a bit of curiosity.

Apr 11, 2020

The ‘quantum magnet’

Posted by in categories: computing, engineering, particle physics, quantum physics

Circa 2011 essentially a magnet could be a battery and cpu and a gpu with magnonics.


Harvard physicists have expanded the possibilities for quantum engineering of novel materials such as high-temperature superconductors by coaxing ultracold atoms trapped in an optical lattice — a light crystal — to self-organize into a magnet, using only the minute disturbances resulting from quantum mechanics. The research, published in the journal Nature, is the first demonstration of such a “quantum magnet” in an optical lattice.

As modern technology depends more and more on materials with exotic quantum mechanical properties, researchers are coming up against a natural barrier.

Continue reading “The ‘quantum magnet’” »

Apr 10, 2020

First sighting of mysterious Majorana fermion on a common metal

Posted by in categories: computing, particle physics, quantum physics

Error free qubits o.,o.


Physicists at MIT and elsewhere have observed evidence of Majorana fermions—particles that are theorized to also be their own antiparticle—on the surface of a common metal: gold. This is the first sighting of Majorana fermions on a platform that can potentially be scaled up. The results, published in the Proceedings of the National Academy of Sciences, are a major step toward isolating the particles as stable, error-proof qubits for quantum computing.

In particle physics, fermions are a class of elementary particles that includes electrons, protons, neutrons, and quarks, all of which make up the building blocks of matter. For the most part, these particles are considered Dirac fermions, after the English physicist Paul Dirac, who first predicted that all fermionic fundamental particles should have a counterpart, somewhere in the universe, in the form of an antiparticle—essentially, an identical twin of opposite charge.

Continue reading “First sighting of mysterious Majorana fermion on a common metal” »

Apr 10, 2020

Charting a course toward quantum simulations of nuclear physics

Posted by in categories: computing, cosmology, particle physics, quantum physics, transportation

In nuclear physics, like much of science, detailed theories alone aren’t always enough to unlock solid predictions. There are often too many pieces, interacting in complex ways, for researchers to follow the logic of a theory through to its end. It’s one reason there are still so many mysteries in nature, including how the universe’s basic building blocks coalesce and form stars and galaxies. The same is true in high-energy experiments, in which particles like protons smash together at incredible speeds to create extreme conditions similar to those just after the Big Bang.

Fortunately, scientists can often wield simulations to cut through the intricacies. A represents the important aspects of one system—such as a plane, a town’s traffic flow or an atom—as part of another, more accessible system (like a or a scale model). Researchers have used their creativity to make simulations cheaper, quicker or easier to work with than the formidable subjects they investigate—like proton collisions or black holes.

Simulations go beyond a matter of convenience; they are essential for tackling cases that are both too difficult to directly observe in experiments and too complex for scientists to tease out every logical conclusion from basic principles. Diverse research breakthroughs—from modeling the complex interactions of the molecules behind life to predicting the experimental signatures that ultimately allowed the identification of the Higgs boson—have resulted from the ingenious use of simulations.