БЛОГ

Archive for the ‘quantum physics’ category: Page 401

Apr 1, 2020

IBM, NUS tie up to tap quantum computing for problem solving

Posted by in categories: cybercrime/malcode, finance, quantum physics

Computing giant IBM and the National University of Singapore (NUS) have embarked on a three-year collaboration to find ways to use quantum computing to solve real-world problems and train quantum scientists.

Quantum computers are currently used in many areas, including medical research into new drug development and the enhancement of cyber security in the financial sector.

The collaboration between IBM and NUS, announced yesterday, is the first of its kind in South-east Asia and gives NUS researchers access to 15 of IBM’s powerful quantum computing systems via a cloud service.

Apr 1, 2020

Israel Aerospace Industries works with startups developing quantum technology

Posted by in categories: quantum physics, robotics/AI

Quantum computing, for its parts, replaces the traditional 1 and 0 computer binary system with a system that calculates the chances of 1 and 0—meaning that it could have both 1 and 0 at the same time, but with different probabilities. “This enables the computing of certain aspects far faster and in a more efficient manner. The computing time could be 1,000 or 10,000 times faster,” said Lupa. When combined with artificial intelligence, machines could learn on their own with the speed of quantum computing, he stated.

At the moment, only massive quantum computers exist, while quantum communications are still at the proof of concept stage. Quantum radars have made some progress. But all of this is expected to change.

“In the end, it will be a revolution,” said Lupa. “But it will not happen tomorrow. When these things become accessible to everyone, then it will be revolutionary.”

Mar 31, 2020

How to Build a 3D Map of the Universe – and Why

Posted by in categories: computing, quantum physics, space

With quantum radar, you can map the cosmos with 3D modeling and dwave quantum computer.

Mar 31, 2020

Tiny optical cavity could make quantum networks possible

Posted by in categories: computing, encryption, internet, quantum physics

Engineers at Caltech have shown that atoms in optical cavities—tiny boxes for light—could be foundational to the creation of a quantum internet. Their work was published on March 30 by the journal Nature.

Quantum networks would connect quantum computers through a system that also operates at a quantum, rather than classical, level. In theory, quantum computers will one day be able to perform certain functions faster than by taking advantage of the special properties of quantum mechanics, including superposition, which allows to store information as a 1 and a 0 simultaneously.

As they can with classical computers, engineers would like to be able to connect multiple quantum computers to share data and work together—creating a “quantum internet.” This would open the door to several applications, including solving computations that are too large to be handled by a single quantum computer and establishing unbreakably secure communications using quantum cryptography.

Mar 30, 2020

Physicists develop new photon source for tap-proof communication

Posted by in categories: encryption, quantum physics, space

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the U.K., Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of 2.1 micrometers. In practice, entangled photons are used in encryption methods such as quantum key distribution to completely secure telecommunications between two partners against eavesdropping attempts. The research results are presented to the public for the first time in the current issue of Science Advances.

It has been regarded as technically possible to implement encryption mechanisms with entangled photons in the near-infrared range of 700 to 1550 nanometers. However, these have disadvantages, especially in satellite-based communication. They are disturbed by light-absorbing gases in the atmosphere as well as the background radiation of the sun. With existing technology, end-to-end encryption of transmitted data can only be guaranteed at night, but not on sunny and cloudy days.

Mar 29, 2020

Research Scientist, Experimental Quantum Computing

Posted by in categories: computing, quantum physics

:oooo.

Mar 28, 2020

Researchers catch light in a funnel

Posted by in category: quantum physics

Professor Ronny Thomale holds a chair for theoretical condensed matter physics, the TP1, at the Julius-Maximilian University of Würzburg. The discovery and theoretical description of new quantum states of matter is a prime objective of his research. “Developing a theory for a new physical phenomenon which then inspires new experiments seeking after this effect is one of the biggest moments in a theoretical physicist’s practice,” he says. In an ideal case, such an effect would even unlock unexpected technological potential.

All this has come together with a recent project which Thomale pursued together with the optical experimental group of Professor Alexander Szameit at the University of Rostock, the results of which have now been published in Science.

Mar 28, 2020

Quantum copycat: Researchers find a new way in which bosons behave like fermions

Posted by in categories: particle physics, quantum physics

Bosons and fermions, the two classes into which all particles—from the sub-atomic to atoms themselves—can be sorted, behave very differently under most circumstances. While identical bosons like to congregate, identical fermions tend to be antisocial. However, in one dimension—imagine particles that can only move on a line—bosons can become as stand-offish as fermions, so that no two occupy the same position. Now, new research shows that the same thing—bosons acting like fermions—can happen with their velocities. The finding adds to our fundamental understanding of quantum systems and could inform the eventual development of quantum devices.

“All particles in nature come in one of two types, depending on their ‘spin,’ a quantum property with no real analogue in ,” said David Weiss, Distinguished Professor of Physics at Penn State and one of the leaders of the research team. “Bosons, whose spins are whole integers, can share the same quantum state, while fermions, whose spins are half integers, cannot. When the particles are cold or dense enough, bosons behave completely differently from fermions. Bosons form ‘Bose-Einstein condensates,’ congregating in the same . Fermions, on the other hand, fill available states one by one to form what is called a ‘Fermi sea.’”

Researchers at Penn State have now experimentally demonstrated that, when bosons expand in one dimension—the line of atoms is allowed spread out to become longer—they can form a Fermi sea. A paper describing the research appears March 27, 2020 in the journal Science.

Mar 27, 2020

Teleportation is Here, But It’s Not What We Expected

Posted by in categories: humor, particle physics, quantum physics, space travel

In 2005, the obituary of physicist Asher Peres in the magazine Physics Today told us that when a journalist asked him if quantum teleportation could transport a person’s soul as well as their body, the scientist replied: “No, not the body, just the soul.” More than just a simple joke, Peres’ response offers a perfect explanation, encoded in a metaphor, of the reality of a process that we have seen countless times in science fiction. In fact, teleportation does exist, although in the real world it is quite different from the famous “Beam me up, Scotty!” associated with the Star Trek series.

Teleportation in real science began to take shape in 1993 thanks to a theoretical study published by Peres and five other researchers in Physical Review Letters, which laid the foundation for quantum teleportation. Apparently, it was co-author Charles Bennett’s idea to associate the proposed phenomenon with the popular idea of teleportation, but there is an essential difference between fiction and reality: in the latter it’s not matter that travels, but rather information, which transfers properties from the original matter to that of the destination matter.

Quantum teleportation is based on a hypothesis described in 1935 by physicist Albert Einstein and his colleagues Boris Podolsky and Nathan Rosen, known as the EPR paradox. As a consequence of the laws of quantum physics, it was possible to obtain two particles and separate them in space so that they would continue to share their properties, as two halves of a whole. Thus, an action on one of them (on A, or Alice, according to the nomenclature used) would instantaneously have an effect on the other (on B, or Bob). This “spooky action at a distance”, in Einstein’s words, would seem capable of violating the limit of the speed of light.

Mar 27, 2020

Black holes: The ultimate quantum computers?

Posted by in categories: computing, cosmology, quantum physics

Circa 2006


By Maggie Mckee

Nearly all of the information that falls into a black hole escapes back out, a controversial new study argues. The work suggests that black holes could one day be used as incredibly accurate quantum computers – if enormous theoretical and practical hurdles can first be overcome.

Continue reading “Black holes: The ultimate quantum computers?” »