БЛОГ

Archive for the ‘quantum physics’ category: Page 402

Mar 27, 2020

Physicists to Build a Quantum Teleporter ‘Wormhole’ Modeled on Black Holes

Posted by in categories: computing, cosmology, quantum physics

Scientists are attempting to entangle black holes into a working wormhole using quantum computers.

Mar 27, 2020

Google Scholar

Posted by in categories: biotech/medical, quantum physics

Based on a lot of study it may be possible that if naturally derived dmt having quantum entanglement properties that someday it could be used to naturally teleport people. Especially if can essentially have suppositions properties that it may in fact allow an interdimensional portal quantum mechanically speaking it also said that cannabis did not start on earth either and is an alien plant. It may that someday we could take a pill to teleport through the fabric of space time with a biochemical means but it would involve a sort higgs mode or higgs boson level quantum teleportation for that amount of energy. But it may eventually lead to real teleportation in human beings naturally someday since it already holds those properties.

Mar 26, 2020

Harvard, MIT Scientists Make Quantum Leap Toward New Internet

Posted by in categories: internet, quantum physics

Researchers from Harvard and MIT have pioneered a device that could improve quantum communication and may be the key to developing a quantum internet, according to an article published Monday in the scientific journal Nature.

Quantum signals lose information when traveling over long distances. To solve this problem, the researchers’ new technology catches and stores quantum bits — known as qubits — thus preventing information loss. The physicists hope this breakthrough will open the door to a quantum internet that can communicate unhackable messages.

“This is the first system-level demonstration, combining major advances in nanofabrication, photonics and quantum control, that shows a clear quantum advantage to communicating information using quantum repeater nodes,” Mikhail D. Lukin — a Harvard physics professor who lead the research team — said in a press release published Monday. “We look forward to starting to explore new, unique applications using these techniques.”

Mar 25, 2020

Is nonlocality inherent in all identical particles in the universe?

Posted by in categories: computing, mathematics, particle physics, quantum physics

What is interaction, and when does it occur? Intuition suggests that the necessary condition for the interaction of independently created particles is their direct touch or contact through physical force carriers. In quantum mechanics, the result of the interaction is entanglement—the appearance of non-classical correlations in the system. It seems that quantum theory allows entanglement of independent particles without any contact. The fundamental identity of particles of the same kind is responsible for this phenomenon.

Quantum mechanics is currently the best and most accurate theory used by physicists to describe the world around us. Its characteristic feature, however, is the abstract mathematical language of , notoriously leading to serious interpretational problems. The view of reality proposed by this theory is still a subject of scientific dispute that, over time, is only becoming hotter and more interesting. New research motivation and intriguing questions are brought forth by a fresh perspective resulting from the standpoint of quantum information and the enormous progress of experimental techniques. These allow verification of the conclusions drawn from subtle thought experiments directly related to the problem of interpretation. Moreover, researchers are now making enormous progress in the field of quantum communication and quantum computer technology, which significantly draws on non-classical resources offered by quantum mechanics.

Pawel Blasiak from the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow and Marcin Markiewicz from the University of Gdansk focus on analyzing widely accepted paradigms and theoretical concepts regarding the basics and interpretation of quantum mechanics. The researchers are trying to determine to what extent the intuitions used to describe quantum mechanical processes are justified in a realistic view of the world. For this purpose, they try to clarify specific theoretical ideas, often functioning in the form of vague intuitions, using the language of mathematics. This approach often results in the appearance of inspiring paradoxes. Of course, the more basic the concept to which a given paradox relates, the better, because it opens up new doors to deeper understanding a given problem.

Mar 24, 2020

Graviton laser

Posted by in category: quantum physics

A gravity laser :DDD.


We consider the possibility of creating a graviton laser. The lasing medium would be a system of contained, ultra cold neutrons. Ultra cold neutrons are a quantum mechanical system that interacts with gravitational fields and with the phonons of the container walls. It is possible to create a population inversion by pumping the system using the phonons. We compute the rate of spontaneous emission of gravitons and the rate of the subsequent stimulated emission of gravitons. The gain obtainable is directly proportional to the density of the lasing medium and the fraction of the population inversion. The applications of a graviton laser would be interesting.

Mar 24, 2020

Higgs Boson Creation in Laser-Boosted Lepton Collisions

Posted by in categories: particle physics, quantum physics

Higgs boson laser.


Electroweak processes in high-energy lepton collisions are considered in a situation where the incident center-of-mass energy lies below the reaction threshold, but is boosted to the required level by subsequent laser acceleration. Within the framework of laser-dressed quantum field theory, we study the laser-boosted process $\ell^+ \ell^- \to HZ^0$ in detail and specify the technical demands needed for its experimental realization. Further, we outline possible qualitative differences to field-free processes regarding the detection of the produced Higgs bosons.

Mar 24, 2020

Visibility of the amplitude (Higgs) mode in condensed matter

Posted by in categories: energy, quantum physics

The amplitude mode is a ubiquitous collective excitation in condensed-matter systems with broken continuous symmetry. It is expected in antiferromagnets, short coherence length superconductors, charge density waves, and lattice Bose condensates. Its detection is a valuable test of the corresponding field theory, and its mass gap measures the proximity to a quantum critical point. However, since the amplitude mode can decay into low-energy Goldstone modes, its experimental visibility has been questioned. Here we show that the visibility depends on the symmetry of the measured susceptibility. The longitudinal susceptibility diverges at low frequency as Im χ σ σ ∼ ω − 1 (d = 2) or log (1 / | ω |) (d = 3), which can completely obscure the amplitude peak. In contrast, the scalar susceptibility is suppressed by four extra powers of frequency, exposing the amplitude peak throughout the ordered phase. We discuss experimental setups for measuring the scalar susceptibility. The conductivity of the O (2 ) theory (relativistic superfluid) is a scalar response and therefore exhibits suppressed absorption below the Higgs mass threshold, σ ∼ ω 2 d + 1. In layered, short coherence length superconductors, (relevant, e.g., to cuprates) this threshold is raised by the interlayer plasma frequency.

Mar 21, 2020

Innovative new fabrication approach for reprogrammable photonic circuits

Posted by in categories: computing, quantum physics, solar power, sustainability

Modern society relies on technologies with electronic integrated circuits (IC) at their heart, but these may prove to be less suitable in future applications such as quantum computing and environmental sensing. Photonic integrated circuits (PICs), the light-based equivalent of electronic ICs, are an emerging technology field that can offer lower energy consumption, faster operation, and enhanced performance. However, current PIC fabrication methods lead to large variability between fabricated devices, resulting in limited yield, long delays between the conceptual idea and the working device, and lack of configurability. Researchers at Eindhoven University of Technology have devised a new process for the fabrication of PICs that addresses these critical issues, by creating novel reconfigurable PICs in the same way that the emergence of programmable logic devices transformed IC production in the 1980s.

Photonic integrated circuits (PICs) – the light-based equivalent of electronic ICs—carry signals via visible and . Optical materials with adjustable refractive index are essential for reconfigurable PICs as they allow for more accurate manipulation of light passing through the materials, leading to better PIC performance.

Current programmable PIC concepts suffer from issues such as volatility and/or high optical signal losses—both of which negatively affect a material’s ability to keep its programmed state. Using hydrogenated (a-Si: H), a material used in thin-film silicon , and the associated Staebler-Wronski effect (SWE), which describes how the of a-Si: H can be changed via light exposure or heating, researchers at Eindhoven University of Technology have designed a new PIC fabrication process that addresses the shortfalls of current techniques and could lead to the emergence of universal programmable PICs.

Mar 21, 2020

Quantum sensors: The Revolution You’ve Never Heard Of

Posted by in categories: economics, quantum physics

Patrick Maletinsky is recognized worldwide as an expert in the field of quantum sensors. He explains why he sees significant economic and scientific potential in quantum sensing already in the near-term.

Mar 21, 2020

Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors

Posted by in categories: materials, quantum physics

:oooooooo.


Recent findings of new Higgs modes in unconventional superconductors require a classification and characterization of the modes allowed by nontrivial gap symmetry. Here we develop a theory for a tailored nonequilibrium quantum quench to excite all possible oscillation symmetries of a superconducting condensate. We show that both a finite momentum transfer and quench symmetry allow for an identification of the resulting Higgs oscillations. These serve as a fingerprint for the ground state gap symmetry. We provide a classification scheme of these oscillations and the quench symmetry based on group theory for the underlying lattice point group. For characterization, analytic calculations as well as full scale numeric simulations of the transient optical response resulting from an excitation by a realistic laser pulse are performed. Our classification of Higgs oscillations allows us to distinguish between different symmetries of the superconducting condensate.