Toggle light / dark theme

Quantum Computing Algorithm Breakthrough Brings Practical Use Closer to Reality

Out of all common refrains in the world of computing, the phrase “if only software would catch up with hardware” would probably rank pretty high. And yet, software does sometimes catch up with hardware. In fact, it seems that this time, software can go as far as unlocking quantum computations for classical computers. That’s according to researchers with the RIKEN Center for Quantum Computing, Japan, who have published work on an algorithm that significantly accelerates a specific quantum computing workload. More significantly, the workload itself — called time evolution operators — has applications in condensed matter physics and quantum chemistry, two fields that can unlock new worlds within our own.

Normally, an improved algorithm wouldn’t be completely out of the ordinary; updates are everywhere, after all. Every app update, software update, or firmware upgrade is essentially bringing revised code that either solves problems or improves performance (hopefully). And improved algorithms are nice, as anyone with a graphics card from either AMD or NVIDIA can attest. But let’s face it: We’re used to being disappointed with performance updates.

Quantum Experiment Shows How Einstein Was Wrong About One Thing

Albert Einstein wasn’t entirely convinced about quantum mechanics, suggesting our understanding of it was incomplete. In particular, Einstein took issue with entanglement, the notion that a particle could be affected by another particle that wasn’t close by.

Experiments since have shown that quantum entanglement is indeed possible and that two entangled particles can be connected over a distance. Now a new experiment further confirms it, and in a way we haven’t seen before.

In the new experiment, scientists used a 30-meter-long tube cooled to close to absolute zero to run a Bell test: a random measurement on two entangled qubit (quantum bit) particles at the same time.

Google Quantum AI Breaks Ground: Unraveling the Mystery of Non-Abelian Anyons

Summary: For the first time, Google Quantum AI has observed the peculiar behavior of non-Abelian anyons, particles with the potential to revolutionize quantum computing by making operations more resistant to noise.

Non-Abelian anyons have the unique feature of retaining a sort of memory, allowing us to determine when they have been exchanged, even though they are identical.

The team successfully used these anyons to perform quantum computations, opening a new path towards topological quantum computation. This significant discovery could be instrumental in the future of fault-tolerant topological quantum computing.

New Quantum Computer Algorithm Unlocks the Power of Atomic-Level Interactions

A novel protocol for quantum computers could reproduce the complex dynamics of quantum materials.

RIKEN researchers have created a hybrid quantum-computational algorithm that can efficiently calculate atomic-level interactions in complex materials. This innovation enables the use of smaller quantum computers or conventional ones to study condensed-matter physics and quantum chemistry, paving the way for new discoveries in these fields.

A quantum-computational algorithm that could be used to efficiently and accurately calculate atomic-level interactions in complex materials has been developed by RIKEN researchers. It has the potential to bring an unprecedented level of understanding to condensed-matter physics and quantum chemistry—an application of quantum computers first proposed by the brilliant physicist Richard Feynman in 1981.

/* */