Toggle light / dark theme

Pioneering Quantum Physicists Win Nobel Prize in Physics

The physicists Alain Aspect, John Clauser and Anton Zeilinger have won the 2022 Nobel Prize in Physics for experiments that proved the profoundly strange quantum nature of reality. Their experiments collectively established the existence of a bizarre quantum phenomenon known as entanglement, where two widely separated particles appear to share information despite having no conceivable way of communicating.

Entanglement lay at the heart of a fiery clash in the 1930s between physics titans Albert Einstein on the one hand and Niels Bohr and Erwin Schrödinger on the other about how the universe operates at a fundamental level. Einstein believed all aspects of reality should have a concrete and fully knowable existence. All objects — from the moon to a photon of light — should have precisely defined properties that can be discovered through measurement. Bohr, Schrödinger and other proponents of the nascent quantum mechanics, however, were finding that reality appeared to be fundamentally uncertain; a particle does not possess certain properties until the moment of measurement.

Entanglement emerged as a decisive way to distinguish between these two possible versions of reality. The physicist John Bell proposed a decisive thought experiment that was later realized in various experimental forms by Aspect and Clauser. The work proved Schrödinger right. Quantum mechanics was the operating system of the universe.

Fine Tuned Universe: the critics strike back

At the end of of 2022, we released a film offering a reply to the fine tuning argument for God from leading physicists and philosophers of physics. This included both those that doubt there is any fine tuning and those that think there is but it can be solved by naturalistic means.
Subsequently astrophysicist Luke Barnes and philosopher Philip Goff offered their criticism of our criticism. Here we have assembled some of our original talking heads to review their criticism and offer a reply, defending the original position that fine tuning argument for God does not work.
Our original film can be found here: https://www.youtube.com/watch?v=jJ-fj3lqJ6M

Luke Barnes and Philip Goff’s reply is here: https://www.youtube.com/watch?v=QJYWkqOzUQ0&t=4036s and we also recommend this video on Bayes theorem on the Majesty of Reason Channel: https://www.youtube.com/watch?v=o1MdtyLL3Uw&t=4423s.

Our panel consists of Graham Priest, Distinguished Professor of Philosophy at The Graduate Center, City University of New York, well known for his work in logic especially non classical logic, the philosophy of mathematics and science and Buddhist philosophy.

Barry Loewer, who is the distinguished professor of philosophy at Rutgers University and director of the Rutgers Center for Philosophy and the Sciences. Barry specialises in philosophy of science and philosophical logic and the foundations of quantum mechanics, statical mechanics and probability.

Dan Linford who is one of the rising stars in the intersection of the philosophy of physics and philosophy of religion. He did his Phd in philosophy, under Paul Draper and had well known atheist cosmologist Sean Carroll and theistic fine tuning advocate Rob Collins on his thesis committee. He’s now doing a postdoc at the University of Nebraska and recently authored the book Existential Inertia and Classical Theistic Proofs with Joe Schmidt.

Niayesh Afshordi who is an astrophysicist and cosmologist, he’s Professor at the University fo Waterloo and faculty at the Permitter Institute for Theoretical physics. Niayesh won the silver medal at the world physics Olympiad as a teenager, won 1st prize the The Buchalter Cosmology Prize and works in a variety of fields from early universe cosmology, black holes, dark energy and quantum gravity.

A scalable and programmable quantum phononic processor based on trapped ions

Quantum computing systems have the potential to outperform classical computers on some tasks, helping to solve complex real-world problems in shorter times. Research teams worldwide have thus been trying to realize this quantum advantage over traditional computers, by creating and testing different quantum systems.

Researchers at Tsinghua University recently developed a new programmable quantum phononic processor with trapped ions. This processor, introduced in a paper in Nature Physics, could be easier to scale up in size than other previously proposed photonic quantum processors, which could ultimately enable better performances on complex problems.

“Originally, we were interested in the proposal of Scott Aaronson and others about Boson sampling, which might show the quantum advantages of simple linear optics and photons,” Kihwan Kim, one of the researchers who carried out the study, told Phys.org. “We were wondering if it is possible to realize it with the in a trapped ion system.”

Strangeworks might be the first startup to rely on AI to create everything it brought to SXSW

It’s a very modern conjurer’s trick: Create a SXSW talk out of thin air, with the help of generative AI. That’s what whurley did this year in Austin. It took nine weeks for whurley — a staple of the Austin tech scene — to create and prepare for a keynote at SXSW 2018, where he would debut Strangeworks, a quantum computing startup he co-founded and runs. Five years later, generative AI would complete the task in just a few hours.

And it was actually pretty good. The 45-minute speech was comprehensive, interesting and struck a whurley-like tone. There was one swear word (fuck) and a few jokes (including two lawyer ones) that the audience laughed at.

Quantum Light Could Probe Chemical Reactions in Real Time

For their new study, the researchers aimed to understand how quantum correlations inside a source material, be it a gas or a mineral, would impact the quantum properties of the light bursts coming out, if at all. “High harmonic generation is a very important area. And still, until recently, it was described by a classical picture of light,” Kaminer says.

In quantum mechanics, figuring out what’s going on with more than a few particles at the same time is notoriously difficult. Kaminer and Alexey Gorlach, a graduate student in his lab, used their COVID-imposed isolation to try to make progress on a fully quantum description of light emitted in high harmonics. “It’s really crazy; Alexey built a super complex mathematical description on a scale that we’ve never had before,” Kaminer says.

Next, to fully incorporate the quantum properties of the material used to generate this light, Kaminer and Gorlach teamed up with Andrea Pizzi, then a graduate student at the University of Cambridge and now a postdoctoral fellow at Harvard University.

Faint gravitational waves may be from primordial fractures time

With each of these splittings, the universe completely remolded itself. New particles arose to replace ones that could exist only in extreme conditions previously. The fundamental quantum fields of space-time that dictate how particles and forces interact with each other reconfigured themselves. We do not know how smoothly or roughly these phase transitions took place, but it’s perfectly possible that with each splitting, the universe settled into multiple identities at once.

This fracturing isn’t as exotic as it sounds. It happens with all kinds of phase transitions, like water turning into ice. Different patches of water can form ice molecules with different orientations. No matter what, all the water turns into ice, but different domains can have differing molecular arrangements. Where those domains meet walls, or imperfections, fracturing will appear.

Physicists are especially interested in the so-called GUT phase transition of our universe. GUT is short for “grand unified theory,” a hypothetical model of physics that merges the strong nuclear force with electromagnetism and the weak nuclear force. These theories are just beyond the reach of current experiments, so physicists and astronomers turn to the conditions of the early universe to study this important transition.

The experimental observation of quantum avalanches in a many-body localized system

Strongly correlated systems are systems made of particles that strongly interact with one another, to such an extent that their individual behavior depends on the behavior of all other particles in the system. In states that are far from equilibrium, these systems can sometimes give rise to fascinating and unexpected physical phenomena, such as many-body localization.

Many-body localization occurs when a system made of interacting particles fails to reach even at high temperatures. In many-body localized systems, particles thus remain in a state of non-equilibrium for long periods of time, even when a lot of energy is flowing through them.

Theoretical predictions suggest that the instability of the many-body localized phase is caused by small thermal inclusions in the strongly interacting system that act as a bath. These inclusions prompt the delocalization of the entire system, through a mechanism that is known as avalanche propagation.

/* */