Toggle light / dark theme

Researchers control the anomalous Hall effect and Berry curvature to create flexible quantum magnets

Some of our most important everyday items, such as computers, medical equipment, stereos, generators, and more, work because of magnets. We know what happens when computers become more powerful, but what might be possible if magnets became more versatile? What if one could change a physical property that defined their usability? What innovation might that catalyze?

It’s a question that MIT Plasma Science and Fusion Center (PSFC) research scientists Hang Chi, Yunbo Ou, Jagadeesh Moodera, and their co-authors explore in a new, open-access Nature Communications paper, “Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride.”

Understanding the magnitude of the authors’ discovery requires a brief trip back in time: In 1,879, a 23-year-old graduate student named Edwin Hall discovered that when he put a magnet at right angles to a strip of metal that had a current running through it, one side of the strip would have a greater charge than the other. The was deflecting the current’s electrons toward the edge of the metal, a phenomenon that would be named the Hall effect in his honor.

Building a quantum computer in reverse

Scaling has long been recognized as a major hurdle for quantum processors, along with a need for advances in quantum error correction and the control of quantum gates.

However, while rapid progress has been made in the latter two, far less progress has been made in the development of a CMOS-based scalable system, where the devices and qubits are sufficiently identical that the number of external control signals increases slowly with the number of qubits.

Therefore the development, and taping-out, of a CMOS-based scaling architecture has taken on new significance, as scaling has become the most critical remaining task for building a commercially viable quantum computer.

Sampling frequency thresholds for the quantum advantage of the quantum approximate optimization algorithm

We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and depth p required for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph sizes N, a quantum device must support depth p > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that QAOA p ≤ 11 does not scale with N. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs.

How splitting sound might lead to a new kind of quantum computer

When you turn on a lamp to brighten a room, you are experiencing light energy transmitted as photons, which are small, discrete quantum packets of energy. These photons must obey the sometimes strange laws of quantum mechanics, which, for instance, dictate that photons are indivisible, but at the same time, allow a photon to be in two places at once.

Similar to the photons that make up beams of light, indivisible quantum particles called phonons make up a beam of sound. These particles emerge from the collective motion of quadrillions of atoms, much as a “stadium wave” in a sports arena is due to the motion of thousands of individual fans. When you listen to a song, you’re hearing a stream of these very small quantum particles.

Quantum Leap: Scientists Develop Promising Building Blocks for Photonic Quantum Simulators

Scientists at the Niels Bohr Institute, in cooperation with the University of Münster and Ruhr-Universität Bochum, developed new technology capable of processing the enormous amounts of information quantum systems generate. They’ve successfully linked deterministic single-photon.

A photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.

A new type of quantum bit in semiconductor nanostructures

Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.

A German-Chinese research team has successfully created a quantum bit in a semiconductor nanostructure. Using a special energy transition, the researchers created a state in a quantum dot—a tiny area of the semiconductor—in which an electron hole simultaneously possessed two different energy levels. Such superposition states are fundamental for quantum computing.

However, excitation of the state would require a large-scale free-electron that can emit light in the terahertz range. Additionally, this wavelength is too long to focus the beam on the tiny quantum dot. The German-Chinese team has now achieved the excitation with two finely tuned short-wavelength optical .

‘Quantum avalanche’ explains how nonconductors turn into conductors

Looking only at their subatomic particles, most materials can be placed into one of two categories.

Metals—like copper and iron—have free-flowing electrons that allow them to conduct electricity, while —like glass and rubbe r— keep their electrons tightly bound and therefore do not conduct electricity.

Insulators can turn into metals when hit with an intense electric field, offering tantalizing possibilities for microelectronics and supercomputing, but the behind this phenomenon called resistive switching is not well understood.

/* */