Toggle light / dark theme

Decades-Old Quantum Puzzle Solved: Graphene Electrons Violate Fundamental Law of Physics

Electrons in graphene can act like a perfect fluid, defying established physical laws. This finding advances both fundamental science and potential quantum technologies.

For decades, quantum physicists have wrestled with a fundamental question: can electrons flow like a flawless, resistance-free liquid governed by a universal quantum constant? Detecting this unusual state has proven nearly impossible in most materials, since atomic defects, impurities, and structural imperfections disrupt the effect.

Detecting quantum fluids in graphene.

Tiny gold quantum needles with astonishing powers discovered

Scientists at the University of Tokyo have unveiled “gold quantum needles,” a newly discovered nanocluster structure formed under unusual synthesis conditions. Unlike typical spherical clusters, these elongated, pencil-shaped formations display unique quantum behaviors and respond to near-infrared light, making them promising tools for biomedical imaging and energy applications.

How Simple Rules Shatter Scientific Intuition | Stephen Wolfram

Get 50% off Claude Pro, including access to Claude Code, at http://claude.ai/theoriesofeverything.

As a listener of TOE you can get a special 20% off discount to The Economist and all it has to offer! Visit https://www.economist.com/toe.

In this episode, I speak with Stephen Wolfram—creator of Mathematica and Wolfram Language—about a “new kind of science” that treats the universe as computation. We explore computational irreducibility, discrete space, multi-way systems, and how the observer shapes the laws we perceive—from the second law of thermodynamics to quantum mechanics. Wolfram reframes Feynman diagrams as causal structures, connects evolution and modern AI through coarse fitness and assembled “lumps” of computation, and sketches a nascent theory of biology as bulk orchestration. We also discuss what makes science good: new tools, ruthless visualization, respect for history, and a field he calls “ruliology”—the study of simple rules, where anyone can still make real contributions. This is basically a documentary akin to The Life and Times of Stephen Wolfram. I hope you enjoy it.

Join My New Substack (Personal Writings): https://curtjaimungal.substack.com.

Listen on Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.

Timestamps:

Floquet effects unlock graphene’s potential for future electronics

Graphene is an extraordinary material—a sheet of interlocking carbon atoms just one atom thick that is stable and extremely conductive. This makes it useful in a range of areas, such as flexible electronic displays, highly precise sensors, powerful batteries, and efficient solar cells.

A new study—led by researchers from the University of Göttingen, working together with colleagues from Braunschweig and Bremen in Germany, and Fribourg in Switzerland—now takes graphene’s potential to a whole new level. The team has directly observed “Floquet effects” in graphene for the first time.

This resolves a long-standing debate: Floquet engineering—a method in which the properties of a material are very precisely altered using pulses of light—also works in metallic and semi-metallic quantum materials such as graphene. The study is published in Nature Physics.

3D-printed micro ion traps could solve quantum tech’s miniaturization problem

The existing bottleneck in efficiently miniaturizing components for quantum computers could be eased with the help of 3D printing.

Quantum computers tackle massive computational challenges by harnessing the power of countless tiny parts working seamlessly together. Trapped ion technology, where charged particles like ions are trapped by manipulating the , is one such component.

Current microfabrication techniques fall short when it comes to producing the complex electrode structures with optimal ion confinement suitable for quantum operations.

Quantum Computers Mimic Black Holes To Probe Cosmic Secrets

The difference between traditional computers and quantum computers is narrowing in their ability to simulate the scrambling of quantum information. A team of four researchers at RIKEN has successfully used two small quantum computers to simulate quantum information scrambling, a key process in qu

Gold quantum needles could sharpen imaging resolution and boost energy conversion

Researchers Shinjiro Takano, Yuya Hamasaki, and Tatsuya Tsukuda of the University of Tokyo have successfully visualized the geometric structure of growing gold nanoclusters in their earliest stages. During this process, they also successfully grew a novel structure of elongated nanoclusters, which they named gold quantum needles.

UCLA Engineers Build Room-Temperature Quantum-Inspired Computer

Experimental device harnesses quantum properties for efficient processing at room temperature. Engineers are working to design computers capable of handling a difficult class of tasks known as combinatorial optimization problems. These challenges are central to many everyday applications, includi

Quantum emitter discovery in diamonds enables a new type of coupling

Researchers at The City College of New York have shown how a quantum emitter, the nitrogen-vacancy (NV) center in diamond, interacts in unexpected ways with a specially engineered photonic structure when moved around with a scanning tip.

The study, led by Carlos A. Meriles—Martin and Michele Cohen Professor of Physics in the Division of Science—and titled “Emission of Nitrogen–Vacancy Centres in Diamond Shaped by Topological Photonic Waveguide Modes,” appears in the journal Nature Nanotechnology.

What has long been considered a drawback of the NV center—its broad and messy emission spectrum—turns out to enable a new type of coupling that reshapes its light in ways not seen before. This discovery has fundamental importance for , since such coupling could help overcome longstanding challenges like spectral diffusion and open pathways toward robust spin–photon and spin–spin entanglement on a chip.

/* */