Toggle light / dark theme

Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges

Neuromorphic computing approaches become increasingly important as we address future needs for efficiently processing massive amounts of data. The unique attributes of quantum materials can help address these needs by enabling new energy-efficient device concepts that implement neuromorphic ideas at the hardware level. In particular, strong correlations give rise to highly non-linear responses, such as conductive phase transitions that can be harnessed for short-and long-term plasticity. Similarly, magnetization dynamics are strongly non-linear and can be utilized for data classification. This Perspective discusses select examples of these approaches and provides an outlook on the current opportunities and challenges for assembling quantum-material-based devices for neuromorphic functionalities into larger emergent complex network systems.

Scientists Create a Longer-Lasting Exciton that May Open New Possibilities in Quantum Information Science

In a new study, scientists have observed long-lived excitons in a topological material, opening intriguing new research directions for optoelectronics and quantum computing.

Excitons are charge-neutral quasiparticles created when light is absorbed by a semiconductor. Consisting of an excited electron coupled to a lower-energy electron vacancy or hole, an exciton is typically short-lived, surviving only until the electron and hole recombine, which limits its usefulness in applications.

“If we want to make progress in quantum computing and create more sustainable electronics, we need longer exciton lifetimes and new ways of transferring information that don’t rely on the charge of electrons,” said Alessandra Lanzara, who led the study. Lanzara is a senior faculty scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and a UC Berkeley physics professor. “Here we’re leveraging topological material properties to make an exciton that is long lived and very robust to disorder.”

Algorithm of quantum engineering of large-amplitude high-fidelity Schrödinger cat states

We present an algorithm of quantum engineering of large-amplitude $$\ge 5$$ high-fidelity $$\ge 0.99$$ even/odd Schrödinger cat states (SCSs) using a single mode squeezed vacuum (SMSV) state as resource. Set of $$k$$ beam splitters (BSs) with arbitrary transmittance and reflectance coefficients sequentially following each other acts as a hub that redirects a multiphoton state into the measuring modes simultaneously measured by photon number resolving (PNR) detectors. We show that the multiphoton state splitting guarantees significant increase of the success probability of the SCSs generator compared to its implementation in a single PNR detector version and imposes less requirements on ideal PNR detectors.

Bringing Interferometric Imaging into the X-Ray Regime

The experimental realization of a recently proposed technique points to new possibilities for imaging molecules using x rays.

Hanbury Brown and Twiss (HBT) interferometry [1] is a versatile technique widely used in various fields of physics, such as astronomy, quantum optics, and particle physics. By measuring the correlation of photon arrival times on two detectors as a function of the photons’ spatial separation, HBT interferometry enables the determination of the size and spatial distribution of a light source. Recently, a novel x-ray imaging technique based on the HBT method was proposed to image the spatial arrangement of heavy elements in a crystal or molecule by inducing those elements to fluoresce at x-ray wavelengths [2].

NIWC Pacific and its partners are building a quantum Navy

For one, classical physics can predict, with simple mathematics, how an object will move and where it will be at any given point in time and space. How objects interact with each other and their environments follow laws we first encounter in high school science textbooks.

What happens in minuscule realms isn’t so easily explained. At the level of atoms and their parts, measuring position and momentum simultaneously yields only probability. Knowing a particle’s exact state is a zero-sum game in which classical notions of determinism don’t apply: the more certain we are about its momentum, the less certain we are about where it will be.

We’re not exactly sure what it will be, either. That particle could be both an electron and a wave of energy, existing in multiple states at once. When we observe it, we force a quantum choice, and the particle collapses from its state of superposition into one of its possible forms.

A new quantum approach to solve electronic structures of complex materials

If you know the atoms that compose a particular molecule or solid material, the interactions between those atoms can be determined computationally, by solving quantum mechanical equations—at least, if the molecule is small and simple. However, solving these equations, critical for fields from materials engineering to drug design, requires a prohibitively long computational time for complex molecules and materials.

Now, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago’s Pritzker School of Molecular Engineering (PME) and Department of Chemistry have explored the possibility of solving these electronic structures using a quantum .

The research, which uses a combination of new computational approaches, was published online in the Journal of Chemical Theory and Computation. It was supported by Q-NEXT, a DOE National Quantum Information Science Research Center led by Argonne, and by the Midwest Integrated Center for Computational Materials (MICCoM).

A quantum leap in computational performance of quantum processors

A project led by a group of researchers from Israel’s Bar-Ilan University, in collaboration with TII—the Quantum Research Center in Abu Dhabi, United Arab Emirates, is advancing quantum computing by improving the performance of superconducting qubits, the basic computation units of a superconducting quantum processor. The improved qubit, called a tunable superconducting flux qubit, is a micron-sized superconducting loop where electrical current can flow clockwise or counterclockwise, or in a quantum superposition of both directions.

These quantum features would allow the computer to be much faster and more powerful than a normal computer. For the speed potential to be realized, the quantum computer needs to operate several hundred of qubits simultaneously without having them unintentionally interfering with each other.

As an alternative technology to that existing today in quantum processors, superconducting qubits provide several important advantages: First, they are very fast and reliable; and second, it may be simpler to integrate many flux qubits into a processor compared to current available technology.

/* */