БЛОГ

Archive for the ‘quantum physics’ category: Page 504

Aug 29, 2018

Second Coming 2.0: Church Taxes Will Help Resurrect Jesus with 3D Bioprinting

Posted by in categories: 3D printing, bioprinting, computing, life extension, quantum physics, transhumanism

My new article just out: The transhuman future of Quantum Archaeology & living forever is complicated, but it could still be funded by Christians if they rallied around resurrecting Jesus with 3D Bioprinting and Super Computers:

Read more

Aug 28, 2018

Live: step into many quantum worlds

Posted by in category: quantum physics

Sean Carroll will be helping New Scientist Live attendees understand what quantum mechanics means for the many worlds hypothesis — and poor Schrödinger’s cat.

Read more

Aug 27, 2018

Physicists race to demystify Einstein’s ‘spooky’ science

Posted by in categories: computing, encryption, mobile phones, neuroscience, quantum physics, science, space

When it comes to fundamental physics, things can get spooky. At least that’s what Albert Einstein said when describing the phenomenon of quantum entanglement—the linkage of particles in such a way that measurements performed on one particle seem to affect the other, even when separated by great distances. “Spooky action at a distance” is how Einstein described what he couldn’t explain.

While quantum mechanics includes many mysterious phenomena like entanglement, it remains the best fundamental physical theory describing how matter and light behave at the smallest scales. Quantum theory has survived numerous experimental tests in the past century while enabling many advanced technologies: modern computers, digital cameras and the displays of TVs, laptops and smartphones. Quantum entanglement itself is also the key to several next-generation technologies in computing, encryption and telecommunications. Yet, there is no clear consensus on how to interpret what quantum theory says about the true nature of reality at the subatomic level, or to definitively explain how entanglement actually works.

According to Andrew Friedman, a research scientist at the University of California San Diego Center for Astrophysics and Space Sciences (CASS), “the race is on” around the globe to identify and experimentally close potential loopholes that could still allow alternative theories, distinct from quantum theory, to explain perplexing phenomena like quantum entanglement. Such loopholes could potentially allow future quantum encryption schemes to be hacked. So, Friedman and his fellow researchers conducted a “Cosmic Bell” test with polarization-entangled photons designed to further close the “freedom-of-choice” or “free will” loophole in tests of Bell’s inequality, a famous theoretical result derived by physicist John S. Bell in the 1960s. Published in the Aug. 20 issue of Physical Review Letters, their findings are consistent with quantum theory and push back to at least 7.

Continue reading “Physicists race to demystify Einstein’s ‘spooky’ science” »

Aug 24, 2018

Research team finds evidence of matter-matter coupling

Posted by in categories: computing, particle physics, quantum physics

After their recent pioneering experiments to couple light and matter to an extreme degree, Rice University scientists decided to look for a similar effect in matter alone. They didn’t expect to find it so soon.

Rice physicist Junichiro Kono, graduate student Xinwei Li and their international colleagues have discovered the first example of Dicke cooperativity in a matter-matter system, a result reported in Science this week.

The discovery could help advance the understanding of spintronics and , Kono said. On the spintronics side, he said the work will lead to faster information processing with lower power consumption and will contribute to the development of spin-based quantum computing. The team’s findings on quantum magnetism will lead to a deeper understanding of the phases of matter induced by many-body interactions at the atomic scale.

Continue reading “Research team finds evidence of matter-matter coupling” »

Aug 24, 2018

One Universe Is Not Enough

Posted by in category: quantum physics

We don’t need the many-worlds of quantum mechanics to have more Universes than we know what to do with.

Read more

Aug 24, 2018

Researchers achieve multifunctional solid-state quantum memory

Posted by in category: quantum physics

The team of Li Chengfeng, Zhou Zongquan and others from the CAS Key Lab of Quantum Information developed a multi-degree-of-freedom (DOF) multiplexed solid-state quantum memory, and demonstrated photon pulse operation functions with time and frequency DOFs. The results were published in Nature Communications recently.

The reliable storage and coherent manipulation of quantum states with matter-systems enable the construction of large-scale quantum networks based on a quantum repeater. To achieve useful communication rates, highly multi-mode quantum memories will be required to construct a multiplexed quantum repeater.

The team presented the first demonstration of the on-demand storage of orbital-angular-momentum states with weak coherent pulses at the single-photon-level in a rare-earth-ion doped crystal. Through the combination of this 3-dimensional spatial DOF with 2-dimensional temporal and 2-dimensional spectral DOFs, the team created a multiple-DOF memory with high multi-mode capacity up to 3×2×2=12.

Continue reading “Researchers achieve multifunctional solid-state quantum memory” »

Aug 23, 2018

It’s Official, The Transhuman Era Has Begun

Posted by in categories: augmented reality, bioengineering, computing, quantum physics, transhumanism

I don’t know about you, but I had to look them both up to get a solid understanding of these terms. Of course, these ideas aren’t new. And the brave new world of biohacking, I mean grinder biohacking, is fodder for edgy and future forward media outlets as well as the nightly news. What interests me is the shift to a more commonplace reference like Gartner report. Their analysis of over 2,000 innovations from quantum computing to augmented reality, lead them to choose that fine line between man and machine. It’s important and a bold wake-up call to humanity.


Is humanity about to enter its greatest point of transformation?

Read more

Aug 22, 2018

D-Wave Breakthrough Demonstrates First Large-Scale Quantum Simulation of Topological State of Matter

Posted by in categories: quantum physics, robotics/AI

Fully-programmable annealing quantum computer simulates phenomenon behind 2016 Nobel Prize. Promises faster materials prototyping at lower cost.

BURNABY, BC – (August 22, 2018) — D-Wave Systems Inc., the leader in quantum computing systems and software, today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. This complex quantum simulation of materials is a major step toward reducing the need for time-consuming and expensive physical research and development.

Continue reading “D-Wave Breakthrough Demonstrates First Large-Scale Quantum Simulation of Topological State of Matter” »

Aug 22, 2018

D-Wave demonstrates first large-scale quantum simulation of topological state of matter

Posted by in categories: quantum physics, robotics/AI

D-Wave Systems today published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. This complex quantum simulation of materials is a major step toward reducing the need for time-consuming and expensive physical research and development.

The paper, entitled “Observation of topological phenomena in a programmable lattice of 1,800 qubits”, was published in the peer-reviewed journal Nature. This work marks an important advancement in the field and demonstrates again that the fully programmable D-Wave quantum computer can be used as an accurate simulator of quantum systems at a large scale. The methods used in this work could have broad implications in the development of novel materials, realizing Richard Feynman’s original vision of a quantum simulator. This new research comes on the heels of D-Wave’s recent Science paper demonstrating a different type of phase transition in a quantum spin-glass simulation. The two papers together signify the flexibility and versatility of the D-Wave quantum computer in of materials, in addition to other tasks such as optimization and machine learning.

In the early 1970s, theoretical physicists Vadim Berezinskii, J. Michael Kosterlitz and David Thouless predicted a new state of matter characterized by nontrivial topological properties. The work was awarded the Nobel Prize in Physics in 2016. D-Wave researchers demonstrated this phenomenon by programming the D-Wave 2000Q system to form a two-dimensional frustrated lattice of artificial spins. The observed topological properties in the simulated system cannot exist without quantum effects and closely agree with theoretical predictions.

Continue reading “D-Wave demonstrates first large-scale quantum simulation of topological state of matter” »

Aug 22, 2018

Ancient Starlight Just Helped Confirm the Reality of Quantum Entanglement

Posted by in categories: particle physics, quantum physics

Quantum entanglement is the theory that particles can be connected in such a way that measuring one particle can instantaneously convey information about that measurement to the other particle, regardless of the distance between them. It almost sounds like magic, which is probably why it received a healthy dose of criticism from the physics community when the theory was first proposed nearly 100 years ago.

Albert Einstein was a particularly vocal critic of entanglement, which he famously described as “spooky action at a distance.” Part of Einstein’s beef with the quantum mechanics crowd was that he believed that particles have definite qualities that exist before they are measured and that two particles distant in space and time can’t affect one another instantaneously since they are limited by the speed of light—a viewpoint known as local realism.

Under quantum mechanics, however, the properties of a particle don’t exist independently of measurement used to determine those properties. Moreover, when it comes to entangled particles, the measurement of one particle will instantaneously influence the properties of the other entangled particle. This means that the values of these properties will be highly correlated—so highly correlated, in fact, that the degree of coincidence in their values can’t really be explained without recourse to quantum mechanics.

Continue reading “Ancient Starlight Just Helped Confirm the Reality of Quantum Entanglement” »