Dec 25, 2020
A Link Between Wormholes and Quantum Entanglement
Posted by Quinn Sena in categories: cosmology, quantum physics
Circa 2013
Is there a connection between quantum mechanics and Einstein’s general theory of relativity?
Circa 2013
Is there a connection between quantum mechanics and Einstein’s general theory of relativity?
Scientists in Australia have developed a process for calculating the perfect size and density of quantum dots needed to achieve record efficiency in solar panels.
Quantum dots, man-made nanocrystals 100, 000 times thinner than a sheet of paper, can be used as light sensitisers, absorbing infrared and visible light and transferring it to other molecules.
This could enable new types of solar panels to capture more of the light spectrum and generate more electrical current, through a process of ‘light fusion’ known as photochemical upconversion.
Raise your hand if you ever wanted to get beamed onto the transport deck of the USS Enterprise. Maybe we haven’t reached the point of teleporting entire human beings yet (sorry Scotty), but what we have achieved is a huge breakthrough towards quantum internet.
Led by Caltech, a collaborative team from Fermilab, NASA’s Jet Propulsion Lab, Harvard University, the University of Calgary and AT&T have now successfully teleported qubits (basic units of quantum info) across almost 14 miles of fiber optic cables with 90 percent precision. This is because of quantum entanglement, the phenomenon in which quantum particles which are mysteriously “entangled” behave exactly the same even when far away from each other.
In their latest experiment, researchers from Caltech, NASA, and Fermilab (Fermi National Accelerator Laboratory) built a unique system between two labs separated by 27 miles (44km).
The system comprises three nodes which interact with one another to trigger a sequence of qubits, which pass a signal from one place to the other instantly.
The ‘teleportation’ is instant, occurring faster than the speed of light, and the researchers reported a fidelity of more than 90 percent, according to the new study, published in PRX Quantum.
The Big Bang might never have existed as many cosmologists start to question the origin of the Universe. The Big Bang is a point in time defined by a mathematical extrapolation. The Big Bang theory tells us that something has to have changed around 13.7 billion years ago. So, there is no “point” where the Big Bang was, it was always an extended volume of space, according to the Eternal Inflation model. In light of Digital Physics, as an alternative view, it must have been the Digital Big Bang with the lowest possible entropy in the Universe — 1 bit of information — a coordinate in the vast information matrix. If you were to ask what happened before the first observer and the first moments after the Big Bang, the answer might surprise you with its straightforwardness: We extrapolate backwards in time and that virtual model becomes “real” in our minds as if we were witnessing the birth of the Universe.
In his theoretical work, Andrew Strominger of Harvard University speculates that the Alpha Point (the Big Bang) and the Omega Point form the so-called ‘Causal Diamond’ of the conscious observer where the Alpha Point has only 1 bit of entropy as opposed to the maximal entropy of some incredibly gigantic amount of bits at the Omega Point. While suggesting that we are part of the conscious Universe and time is holographic in nature, Strominger places the origin of the Universe in the infinite ultra-intelligent future, the Omega Singularity, rather than the Big Bang.
The Universe is not what textbook physics tells us except that we perceive it in this way — our instruments and measurement devices are simply extensions of our senses, after all. Reality is not what it seems. Deep down it’s pure information — waves of potentiality — and consciousness orchestrating it all. The Big Bang theory, drawing a lot of criticism as of late, uses a starting assumption of the “Universe from nothing,” (a proverbial miracle, a ‘quantum fluctuation’ christened by scientists), or the initial Cosmological Singularity. But aside from this highly improbable happenstance, we can just as well operate from a different set of assumptions and place the initial Cosmological Singularity at the Omega Point — the transcendental attractor, the Source, or the omniversal holographic projector of all possible timelines.
An especially counter-intuitive feature of quantum mechanics is that a single event can exist in a state of superposition—happening both here and there, or both today and tomorrow.
Such superpositions are hard to create, as they are destroyed if any kind of information about the place and time of the event leaks into the surrounding—and even if nobody actually records this information. But when superpositions do occur, they lead to observations that are very different from that of classical physics, raising questions that spill over into our very understanding of space and time.
Scientists from EPFL, MIT, and CEA Saclay, publishing in Science Advances, demonstrate a state of vibration that exists simultaneously at two different times, and provide evidence of this quantum superposition by measuring the strongest class of quantum correlations between light beams that interact with the vibration.
A team of scientists at Freie Universität Berlin has developed an artificial intelligence (AI) method for calculating the ground state of the Schrödinger equation in quantum chemistry. The goal of quantum chemistry is to predict chemical and physical properties of molecules based solely on the arrangement of their atoms in space, avoiding the need for resource-intensive and time-consuming laboratory experiments. In principle, this can be achieved by solving the Schrödinger equation, but in practice this is extremely difficult.
Up to now, it has been impossible to find an exact solution for arbitrary molecules that can be efficiently computed. But the team at Freie Universität has developed a deep learning method that can achieve an unprecedented combination of accuracy and computational efficiency. AI has transformed many technological and scientific areas, from computer vision to materials science. “We believe that our approach may significantly impact the future of quantum chemistry,” says Professor Frank Noé, who led the team effort. The results were published in the reputed journal Nature Chemistry.
Central to both quantum chemistry and the Schrödinger equation is the wave function —a mathematical object that completely specifies the behavior of the electrons in a molecule. The wave function is a high-dimensional entity, and it is therefore extremely difficult to capture all the nuances that encode how the individual electrons affect each other. Many methods of quantum chemistry in fact give up on expressing the wave function altogether, instead attempting only to determine the energy of a given molecule. This however requires approximations to be made, limiting the prediction quality of such methods.
Quantum mechanics has an exciting feature: a single event can exist in a state of superposition – happening bothhereandthere, or bothtodayandtomorrow.
Such superposition is quite challenging to create as they are easily destroyed if any information about the event’s place and time leaks into the surrounding – and even if nobody records this information. Once superposition is created, they lead to observations that are very different from that of classical physics, questioning down to our very understanding of space and time.
Continue reading “A state of vibration that exists simultaneously at two different times” »
Fast, ultra-bright photon source brings scalable quantum photonics within reach. Super-fast quantum computers and communication devices could revolutionize countless aspects of our lives — but first, researchers need a fast, efficient source of the entangled pairs of photons such systems use to tra.
THE FINANCE industry has had a long and profitable relationship with computing. It was an early adopter of everything from mainframe computers to artificial intelligence (see timeline). For most of the past decade more trades have been done at high frequency by complex algorithms than by humans. Now big banks have their eyes on quantum computing, another cutting-edge technology.
A fundamentally new kind of computing will shake up finance—the question is when.
Finance & economics Dec 19th 2020 edition.
Continue reading “Wall Street’s latest shiny new thing: quantum computing” »