Toggle light / dark theme

Scientists ‘control’ quantum light for the first time, achieving landmark

“We have taken a vital first step towards harnessing quantum light for practical use.”

Scientists have for the first time shown that they can control and distinguish tiny quantities of interacting photons — or packets of light energy — with high correlation, according to a study published in Nature.

Harnessing quantum light for practical use.


Inkoly/iStock.

This unprecedented accomplishment marks a significant turning point in the evolution of quantum technology, which could potentially advance quantum computing and medical imaging.

Reality Doesn’t Exist Until We Measure It, Quantum Experiment Confirms

Australian scientists have recreated a famous experiment and confirmed quantum physics’s bizarre predictions about the nature of reality, by proving that reality doesn’t actually exist until we measure it — at least, not on the very small scale.

That all sounds a little mind-meltingly complex, but the experiment poses a pretty simple question: if you have an object that can either act like a particle or a wave, at what point does that object ‘decide’?

Our general logic would assume that the object is either wave-like or particle-like by its very nature, and our measurements will have nothing to do with the answer. But quantum theory predicts that the result all depends on how the object is measured at the end of its journey. And that’s exactly what a team from the Australian National University has now found.

COQUI : A Generative AI Speech Innovation Will Revolutionize This Market

Since the recent announcements of OpenView’s ChatGPT, Google’s Bard, and Baidu’s ChatBot, the industry has been in a frenzy advancing Generative AI products and solutions. Brainy Insights estimates that the generative AI market will grow from USD $8.65 billion in 2022 and reach USD 4188.62 billion by 2032. This translates to over 36% CAGR making generative AI one of the next hottest areas to elevate AI innovations. The software segment will account for the highest revenue share of 65.0% in 2021 and is expected to retain its position over the forecast period.

What is Generative AI?


Generative AI is a form of AI that produce various types of content including text, imagery, audio and synthetic data. The recent buzz around generative AI has been driven by the simplicity of new user interfaces for creating high-quality text, graphics and videos in a matter of seconds. Although not a new technology, the introduction of generative adversarial networks, or GANs which is a type of machine learning algorithm has advanced the innovations in using this form of AI.

COQUI — Generative AI will Revolutionize Voice

The exciting news is that former Mozillians have just raised $3.3M for Coqui, generative AI speech synthesis for all creatives. Prior to founding COQUI, the CEO Kelly Davis led the Mozilla Machine Learning Group, which focused on speech technology. Before that, he worked at the Max Plank Institute for Gravitational Physics and also did his Ph.D. work in Superstring Theory.

Qubits put new spin on magnetism: Boosting applications of quantum computers

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

“With the help of a quantum annealer, we demonstrated a new way to pattern ,” said Alejandro Lopez-Bezanilla, a virtual experimentalist in the Theoretical Division at Los Alamos National Laboratory. Lopez-Bezanilla is the corresponding author of a paper about the research in Science Advances.

“We showed that a magnetic quasicrystal lattice can host states that go beyond the zero and one bit states of classical information technology,” Lopez-Bezanilla said. “By applying a to a finite set of spins, we can morph the magnetic landscape of a quasicrystal object.”

What is quantum cloud computing, and how does it work?

Quantum cloud computing makes quantum computing resources available to organizations, academics and other users through cloud technology.

Cloud-based quantum computers function at greater speeds, with higher computing power than conventional computers, because they employ the principles of quantum physics when solving complex computational problems.

Different types of quantum computers exist, such as quantum annealers, analog quantum simulators and universal quantum computers. Quantum annealers are considered the least powerful among quantum computers but work well to solve optimization problems. Analog quantum simulators, on the other hand, are powerful systems that can solve physics and biochemistry problems.

Pioneering Quantum Physicists Win Nobel Prize in Physics

The physicists Alain Aspect, John Clauser and Anton Zeilinger have won the 2022 Nobel Prize in Physics for experiments that proved the profoundly strange quantum nature of reality. Their experiments collectively established the existence of a bizarre quantum phenomenon known as entanglement, where two widely separated particles appear to share information despite having no conceivable way of communicating.

Entanglement lay at the heart of a fiery clash in the 1930s between physics titans Albert Einstein on the one hand and Niels Bohr and Erwin Schrödinger on the other about how the universe operates at a fundamental level. Einstein believed all aspects of reality should have a concrete and fully knowable existence. All objects — from the moon to a photon of light — should have precisely defined properties that can be discovered through measurement. Bohr, Schrödinger and other proponents of the nascent quantum mechanics, however, were finding that reality appeared to be fundamentally uncertain; a particle does not possess certain properties until the moment of measurement.

Entanglement emerged as a decisive way to distinguish between these two possible versions of reality. The physicist John Bell proposed a decisive thought experiment that was later realized in various experimental forms by Aspect and Clauser. The work proved Schrödinger right. Quantum mechanics was the operating system of the universe.

/* */