БЛОГ

Archive for the ‘quantum physics’ category: Page 549

Feb 9, 2017

DARPA to Hold Proposers Day for Electromagnetic Biosignaling Identification Program

Posted by in categories: biological, quantum physics

Cannot wait to see the outcomes as it will prove how Quantum principles are in fact a core peice in biology that will open up more innovation in areas like BMI, cell circuitry, etc.


The Defense Advanced Research Projects Agency will conduct a Proposers Day via webcast on Feb. 21 to discuss the RadioBio program that aims to determine whether purposeful signaling through electromagnetic waves occurs between biological cells.

“If we can prove that purposeful signaling is happening, the next step would be to discover how the process works,” Mike Fiddy, DARPA program manager, said in a statement released Tuesday.

Continue reading “DARPA to Hold Proposers Day for Electromagnetic Biosignaling Identification Program” »

Feb 8, 2017

Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle

Posted by in categories: bioengineering, biotech/medical, life extension, neuroscience, quantum physics

This is definitely a share that is interesting to many studying synthetic organs and their acceptance into the human body as well as the work occurring on Quantum biology as well.


The goal of in vitro and in vivo toxicity testing is to identify compounds that would predict adverse reactions in humans. Olson et al. found that only 70% of human toxicity was predicted from animal testing. Currently we rely on traditional toxicity testing in animals, a 1930’s methodology that is now challenged due to questionable relevance to human risk, high cost, ethical concerns, and throughput that is too limited for the nearly 80,000 industrial chemicals not yet tested for safety. Additionally, testing usually extrapolates acute, high dose animal results to chronic, low dose human exposures, thereby risking rejection or limiting the use of drugs, industrial chemicals or consumer products. Moreover, the ability of lab animal target organ toxicity to predict dose-limiting toxicity in the corresponding human organ varies widely, from a low of 30% for human cutaneous toxicity, to 50–60% for human hepatotoxicity, to a high of 90% for hematological drug toxicity. Animal drug efficacy models are also notoriously discordant. In an analysis of six drugs to treat head injury, hemorrhage, acute ischemic stroke, neonatal respiratory distress syndrome, and osteoporosis, it was found that efficacy was similar in animals and humans for three drugs but was dissimilar for another three. In oncology drug development, animal models often over-predict anti-tumor efficacy in humans3,4. Examples such as these highlight the need to continue research into methods that reduce the dependence on laboratory animals for toxicity testing of environmental chemicals, determine efficacy and toxicity in drug development, serve as a mimic of human diseases, and provide patient-specific guidance in the emerging field of precision medicine.

Recent advances in bioengineered materials, microfluidic technology, and the availability of human primary, immortalized, and induced pluripotent stem cell (iPSC)-derived cells are enabling development of human microphysiological systems (MPS), sometimes called “organs-on-a-chip” or “human-on-a-chip,” that use multiple organ-specific human cells to recapitulate many functional and structural properties of a human organ. It is now generally accepted and supported by data that cellular responses to drugs in most human organs are more accurately approximated in 3D cell cultures than in traditional static 2D cell cultures5,6. Microfluidic perfusion further improves model performance by providing a flow of nutrients and oxygen and the removal of waste products from the cell cultures. Physiologically relevant flow increases oxygen consumption, Krebs cycle activity and secretion of synthesized proteins, and decreases expression of the hypoxia HIF1 gene. Flow also improves the absorption and metabolism of compounds like benzo[a]pyrene6,8,9. The large number of recent publications reviewing organ MPS models indicates a high degree of interest by industrial and academic researchers, granting agencies and other stakeholders10,11,12,13. In addition to the stand-alone MPS, investigators are linking MPS to study organ-organ functional interactions, efficacy, PK and toxicology14,15,16,17,18.

Continue reading “Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle” »

Feb 8, 2017

Implanted Biosensors Track Vital Signs

Posted by in categories: computing, quantum physics

With the work we are doing on cell circuitry technology and Quantum; these implants will become more and more seamless in all living things.


A biosensor developed in Clemson University, South Carolina, funded by the U.S. Department of Defense, will be able to transmit information regarding blood lactate and glucose levels of a wounded soldier or of other injured patients. The biochip will be implanted in the patient’s body for a short time and will wirelessly transmit the levels of lactate and glucose to the medical staff.

The biochip, sized 2mm x 4mm x 0.5mm, is a dual sensing element coated with hydrogels to prevent it from being rejected by human tissue. The sensor has the ability to transmit life saving readings to the medical personnel. The implantation of the chip will only be temporary, although long term biochip implants are also being tested and may be used as a precaution in some cases.

Continue reading “Implanted Biosensors Track Vital Signs” »

Feb 8, 2017

Here’s what the Future of Banking Security Might Look Like

Posted by in categories: finance, privacy, quantum physics, security

Quantum Tech and Bank security.


BT’s research arm showcased the future of banking technology, including quantum key distribution and biometrics.

Read more

Feb 8, 2017

MIT Scientists: Cosmos Aligns to Show “Einstein Out of Whack” With Quantum Reality (VIDEO)

Posted by in categories: particle physics, quantum physics

Nice read & video illustration.


Quantum entanglement may appear to be closer to science fiction than anything in our physical reality. But according to the laws of quantum mechanics — a branch of physics that describes the world at the scale of atoms and subatomic particles — quantum entanglement, which Einstein once skeptically viewed as “spooky action at a distance,” is, in fact, real.

Continue reading “MIT Scientists: Cosmos Aligns to Show ‘Einstein Out of Whack’ With Quantum Reality (VIDEO)” »

Feb 8, 2017

Experiment Reaffirms Quantum Weirdness

Posted by in categories: particle physics, quantum physics

Quantum’s natural selection explored.


There might be no getting around what Albert Einstein called “spooky action at a distance.” With an experiment described today in Physical Review Letters — a feat that involved harnessing starlight to control measurements of particles shot between buildings in Vienna — some of the world’s leading cosmologists and quantum physicists are closing the door on an intriguing alternative to “quantum entanglement.”

“Technically, this experiment is truly impressive,” said Nicolas Gisin, a quantum physicist at the University of Geneva who has studied this loophole around entanglement.

Continue reading “Experiment Reaffirms Quantum Weirdness” »

Feb 8, 2017

Measuring Time Without a Clock

Posted by in categories: particle physics, quantum physics

When light shines on certain materials, it causes them to emit electrons. This is called “photoemission” and it was discovered by Albert Einstein in 1905, winning him the Nobel Prize. But only in the last few years, with advancements in laser technology, have scientists been able to approach the incredibly short timescales of photoemission. Researchers at EPFL have now determined a delay of one billionth of one billionth of a second in photoemission by measuring the spin of photoemitted electrons without the need of ultrashort laser pulses. The discovery is published in Physical Review Letters.

Photoemission

Photoemission has proven to be an important phenomenon, forming a platform for cutting-edge spectroscopy techniques that allow scientists to study the properties of electrons in a solid. One such property is spin, an intrinsic quantum property of particles that makes them look like as if they were rotating around their axis. The degree to which this axis is aligned towards a particular direction is referred to as spin polarization, which is what gives some materials, like iron, magnetic properties.

Continue reading “Measuring Time Without a Clock” »

Feb 8, 2017

Large groups of photons on demand — an equivalent of photonic ‘integrated circuit’

Posted by in categories: computing, quantum physics

Our story on QC just keeps advancing as I cannot wait to see this technology on our smart devices.


Holographic atomic memory, invented and constructed by physicists from the Faculty of Physics at the University of Warsaw, is the first device able to generate single photons on demand in groups of several dozen or more. The device, successfully demonstrated in practice, overcomes one of the fundamental obstacles towards the construction of some type of quantum computer.

Completely secure, high-speed quantum communication, or even a model of quantum computer, may be among the possible applications for the new source of single photons recently built at the Faculty of Physics at the University of Warsaw (UW Physics), Poland. An unprecedented feature of this new device is that for the first time it enables the on-demand production of a precisely controlled group of photons, as opposed to just a single one.

Continue reading “Large groups of photons on demand — an equivalent of photonic ‘integrated circuit’” »

Feb 7, 2017

Microsoft helps science, open sources their cloud-based tool for biological research

Posted by in categories: biotech/medical, computing, quantum physics, science

Off to the races again; hope folks are onboard. Quantum Bio will grow in importance; and you were warned.


Microsoft today announced that they have open sourced Bio Model Analyzer, a cloud-based tool which allows for biologists to model cell interaction and communication. This latest move is one of the many Microsoft Research initiatives which aims to help lab experts use computer science to speed up breakthroughs in cancer research and treatment.

According to the post, the Bio Model Analzyer (BMA) allows for researchers and science to compare the normal processes of healthy cells to the abnormal processes that occur when disease infects the body. Set against more traditional methods, when using computers, researchers can quickly explore many more possibilities than were previously possible. Jasmin Fisher, a Senior researcher in the programming principles and tools group in Microsoft’s Cambridge, U.K explains in the post:

Continue reading “Microsoft helps science, open sources their cloud-based tool for biological research” »

Feb 7, 2017

Quantum Biology: An Introduction

Posted by in categories: biological, quantum physics

As Geordie Rose was to QC; Jim Al-Khalili is to Quantum Biology. QC and QB will together make a new advance quantum tech world complete as both are needed to advance both the foundation(infrastructure) and the products and services we love and rely on.


What is quantum biology? Philip Ball explains how strange quantum effects take place in the messy world of biology, and how these are behind familiar biological phenomena such as smell, enzymes and bird’s migration.
Subscribe for regular science videos: http://bit.ly/RiSubscRibe

Continue reading “Quantum Biology: An Introduction” »