БЛОГ

Archive for the ‘quantum physics’ category: Page 551

Feb 6, 2017

Quantum principles and human bio system to enhance its abilities

Posted by in categories: bioengineering, biological, biotech/medical, complex systems, disruptive technology, DNA, quantum physics, singularity, Singularity University, telepathy, theory, thought controlled, transhumanism

Recent evidence suggests that a variety of organisms may harness some of the unique features of quantum mechanics to gain a biological advantage. These features go beyond trivial quantum effects and may include harnessing quantum coherence on physiologically important timescales.

Quantum Biology — Quantum Mind Theory

Feb 6, 2017

Scientists Measure Single Quantum of Heat

Posted by in categories: nanotechnology, particle physics, quantum physics

IBM researchers have established experimental proof of a previously difficult-to-prove law of physics, and in so doing may have pointed to a way to overcome many of the heat management issues faced in today’s electronics. Researchers at IBM Zurich have been able to take measurements of the thermal conductance of metallic quantum point contacts made of gold. No big deal, you say? They conducted measurements at the single-atom level, at room temperature—the first time that’s ever been done.

These measurements confirm the Wiedemann–Franz law, which predicts that the smallest amount of heat that can be carried across a metallic junction — a single quantum of heat — is directly proportional to the quantum of electrical conductance through the same junction. By experimentally confirming this law, it can now be used with confidence to predict and to explore nanoscale thermal and electrical phenomena affecting materials down to the size of few atoms or a single molecule.

Continue reading “Scientists Measure Single Quantum of Heat” »

Feb 6, 2017

Quantum computing will revolutionize cancer research, says D-Wave co-founder Farris

Posted by in categories: biotech/medical, quantum physics, robotics/AI

It will and I know some folks are also applying Quantum properties to their bio-research to look at ways to tackle certain brain cancers via (you guessed it) Quantum Biology.


Quantum computing and machine learning will impact most all parts of human life, but one of the first and most compelling benefits we will see is in the field of cancer research, says one expert.

Continue reading “Quantum computing will revolutionize cancer research, says D-Wave co-founder Farris” »

Feb 6, 2017

Quantum Physics Tells Us Our Fate Is Not Written In The Stars

Posted by in category: quantum physics

Quantum entanglement might be strange, but it doesn’t decide the outcome hundreds of years in advance.

Read more

Feb 6, 2017

Quantum Biology: The Hidden Nature of Nature

Posted by in categories: biological, computing, quantum physics

Can the spooky world of quantum physics explain bird navigation, photosynthesis and even our delicate sense of smell? Clues are mounting that the rules governing the subatomic realm may play an unexpectedly pivotal role in the visible world. Join leading thinkers in the emerging field of quantum biology as they explore the hidden hand of quantum physics in everyday life and discuss how these insights may one day revolutionize thinking on everything from the energy crisis to quantum computers.

Visit our Website: http://www.worldsciencefestival.com/
Like us on Facebook: https://www.facebook.com/worldsciencefestival
Follow us on twitter: https://twitter.com/WorldSciFest

Continue reading “Quantum Biology: The Hidden Nature of Nature” »

Feb 6, 2017

IBM Scientists Measure Heat-Transfer through Single Atoms

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Published today, using a technique which looks like trampoline, IBM scientists have measured the thermal conductance of metallic quantum point contacts made of gold down to the single-atom level at room temperature for the first time.

As everything scales to the nanoscale, heat – more precisely, the loss of it – becomes an issue in device reliability. To address this, last year, IBM scientists in Zurich and students from ETH Zurich published and patented a technique to measure the temperature of these nano-sized objects at and below 10 nanometer – a remarkable achievement. They called the novel technique scanning probe thermometry (video) and it provided engineers, for the first time, with the ability to map heat loss across a chip, and, more importantly, map heat loss down to the single device level and to map temperature distributions.

Read more

Feb 6, 2017

Collaboration Prepares DTU for Quantum Future

Posted by in categories: business, computing, encryption, quantum physics

I actually had a person recently state quantum was a fad; boy were they ever wrong.


During the next ten years, quantum technologies will become part of and revolutionize our everyday lives in the form of computers, sensors, encryption, and much more—and in a way that can be difficult for us to comprehend.

Businesses will also boost both their research and development activities in this area.

Continue reading “Collaboration Prepares DTU for Quantum Future” »

Feb 6, 2017

Supercomputers for Quantum Computers

Posted by in categories: encryption, engineering, quantum physics, supercomputing

NICE.


The Science

Newswise — Quantum computers — a possible future technology that would revolutionize computing by harnessing the bizarre properties of quantum bits, or qubits. Qubits are the quantum analogue to the classical computer bits “0” and “1.” Engineering materials that can function as qubits is technically challenging. Using supercomputers, scientists from the University of Chicago and Argonne National Laboratory predicted possible new qubits built out of strained aluminum nitride. Moreover, the scientists showed that certain newly developed qubits in silicon carbide have unusually long lifetimes.

Continue reading “Supercomputers for Quantum Computers” »

Feb 6, 2017

Tesla and Scalar Energy Explained

Posted by in categories: energy, mathematics, quantum physics

Nice write up and anyone working or researching central nervous system should not find this research and findings shocking.


Re: Scam hunter’s question; “Can you explain what a scalar torsion field model is?”

The History of Scalar Energy

Continue reading “Tesla and Scalar Energy Explained” »

Feb 6, 2017

Quantum cognition

Posted by in categories: mathematics, neuroscience, quantum physics

Quantum Cognition — recently published as a new field term for cognitive thinking.


Quantum cognition is an emerging field which applies the mathematical formalism of quantum theory to model cognitive phenomena such as information processing by the human brain, language, decision making, human memory, concepts and conceptual reasoning, human judgment, and perception. [1][2][3][4] The field clearly distinguishes itself from the quantum mind as it is not reliant on the hypothesis that there is something micro-physical quantum mechanical about the brain. Quantum cognition is based on the quantum-like paradigm[5][6] or generalized quantum paradigm [7] or quantum structure paradigm [8] that information processing by complex systems such as the brain, taking into account contextual dependence of information and probabilistic reasoning, can be mathematically described in the framework of quantum information and quantum probability theory.

Quantum cognition uses the mathematical formalism of quantum theory to inspire and formalize models of cognition that aim to be an advance over models based on traditional classical probability theory. The field focuses on modeling phenomena in cognitive science that have resisted traditional techniques or where traditional models seem to have reached a barrier (e.g., human memory [9]), and modeling preferences in decision theory that seem paradoxical from a traditional rational point of view (e.g., preference reversals [10]). Since the use of a quantum-theoretic framework is for modeling purposes, the identification of quantum structures in cognitive phenomena does not presuppose the existence of microscopic quantum processes in the human brain.

Read more