БЛОГ

Archive for the ‘quantum physics’ category: Page 555

Feb 1, 2017

Synopsis: Superdense Coding over Optical Fiber

Posted by in category: quantum physics

Researchers have demonstrated the fiber transmission of quantum information in which each quantum bit carries nearly two bits of classical information.

Sending quantum bits can potentially be twice as efficient as sending classical bits. But realizing this so-called superdense coding has been a major challenge. Brian Williams and colleagues from Oak Ridge National Laboratory, Tennessee, have sent quantum bits over a small fiber link, achieving a new record in bit density. Their technique utilizes the hyperentanglement of photon pairs—a combined entanglement in their polarization and time degrees of freedom.

Suppose Alice wants to send a two-bit message to Bob. She could send two photons with the message encoded in their polarizations. Or, using superdense coding, she could send one polarized photon qubit whose polarization state encodes both bits. The latter option requires that the two parties initially share a pair of photons with entangled polarization. Alice performs one of four operations on her photon and then sends it to Bob, who combines it with his photon to measure which operation Alice performed.

Read more

Feb 1, 2017

Quantum matter: Shaken, but not stirred

Posted by in category: quantum physics

It seems like we like to release all QC research news on the 1st of the month. Great minds think a like I guess.


A service for the media — not a newsletter. Journalists should register for free access to embargoed news and contact information.

Read more

Feb 1, 2017

New Book Alert: “Breakfast With Einstein”

Posted by in categories: mobile phones, neuroscience, quantum physics

Now, this is a breakfast I wished that I could have experienced.


So, I tweeted about this yesterday, but I also spent the entire day feeling achy and feverish, so didn’t have brains or time for a blog post with more details. I’m feeling healthier this morning, though time is still short, so I’ll give a quick summary of the details:

Continue reading “New Book Alert: ‘Breakfast With Einstein’” »

Feb 1, 2017

Boston startup Whitewood Encryption Systems awarded patent for encryption to fend off quantum computers

Posted by in categories: computing, encryption, internet, quantum physics, security

Hmmmm.


Computers based on quantum mechanics have been in the realm of science fiction for years, but recently companies like Google (Nasdaq: GOOGL), and even the National Security Agency, have started to think practically about what their existence would mean.

These super-powerful computers would be exciting in many respects, but they would also be able to break the methods of data encryption that currently make it safe to browse the internet or pay for things online.

Continue reading “Boston startup Whitewood Encryption Systems awarded patent for encryption to fend off quantum computers” »

Feb 1, 2017

The most complex problem in physics could be solved by machines with brains

Posted by in categories: energy, quantum physics, robotics/AI

Will we finally solve world peace though with AI on QC? Hmmm.


I work in computational quantum condensed-matter physics: the study of matter, materials, and artificial quantum systems. Complex problems are our thing.

Researchers in our field are working on hyper-powerful batteries, perfectly efficient power transmission, and ultra-strong materials—all important stuff to making the future a better place. To create these concepts, condensed-matter physics deals with the most complex concept in nature: the quantum wavefunction of a many-particle system. Think of the most complex thing you know, and this blows it out of the water: A computer that models the electron wavefunction of a nanometer-size chunk of dust would require a hard drive containing more magnetic bits than there are atoms in the universe.

Continue reading “The most complex problem in physics could be solved by machines with brains” »

Feb 1, 2017

D-Wave open sources software tool to build foundation for a quantum computing community

Posted by in categories: quantum physics, robotics/AI

Congrats again to Geordie Rose and Vern Brownell for their company’s awesome achievements so far in 2017! I also, would like to take this time to recognize a very special friend of mine Yanbo Xue who continues to do amazing advancements in QC for D-Wave. Congrats Yanbo in your new and incredible role as Research Lead for D-Waves Deep Learning research team and work. I expect we will see many more great things as a result of this great move.


D-Wave open sourced its software tool with the hopes of encouraging more companies to adopt quantum computing technology.

Read more

Feb 1, 2017

ORNL researchers break data transfer efficiency record

Posted by in categories: particle physics, quantum physics

My friends at ORNL just announced they broke a record in the transmittal of information via Qubits this week. We’re getting closer for our QC networking and storage capabilities.


OAK RIDGE, Tenn., Feb. 1, 2017 — Researchers at the Department of Energy’s Oak Ridge National Laboratory have set a new record in the transfer of information via superdense coding, a process by which the properties of particles like photons, protons and electrons are used to store as much information as possible.

The ORNL team transferred 1.67 bits per qubit, or quantum bit, over a fiber optic cable, edging out the previous record of 1.63 per qubit.

Continue reading “ORNL researchers break data transfer efficiency record” »

Feb 1, 2017

First ever blueprint unveiled to construct a large scale quantum computer

Posted by in categories: computing, quantum physics, space

A blueprint for QC larger servers mass production. The question is; is it the right blueprint for everyone? Not sure.


An international team, led by a scientist from the University of Sussex, have today unveiled the first practical blueprint for how to build a quantum computer, the most powerful computer on Earth.

Continue reading “First ever blueprint unveiled to construct a large scale quantum computer” »

Feb 1, 2017

Blueprint for a microwave trapped ion quantum computer

Posted by in categories: computing, quantum physics

More detailed write up on QC Blueprint introduced this week. It does seem to try to address scalability; however, the real test is when we test a smart device and a small server with the blueprint.


The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

Read more

Feb 1, 2017

Black holes on an electronic chip

Posted by in categories: computing, cosmology, nanotechnology, quantum physics

Watch out for the black holes in those QC chips.


Eindhoven professor Rembert Duine has proposed a way to simulate black holes on an electronic chip. This makes it possible to study fundamental aspects of black holes in a laboratory on earth. Additionally, the underlying research may be useful for quantum technologies. Duine (also working at Utrecht University) and colleagues from Chile published their results today in Physical Review Letters.

“Right now, it’s purely theoretical,” says Duine, “but all the ingredients already exist. This could be happening in a lab one or two years from now.” One possibility is in the group of Physics of Nanostructures in the Department of Applied Physics. According to Duine, in these labs experiments are being done that are necessary to create this type of black holes.

Continue reading “Black holes on an electronic chip” »