БЛОГ

Archive for the ‘quantum physics’ category: Page 56

Aug 3, 2024

Researchers trap atoms, force them to serve as photonic transistors

Posted by in categories: computing, particle physics, quantum physics

This could be the road to quantum computation.


“In contrast, solid-state emitters embedded in a photonic circuit are hardly ‘the same’ due to slightly different surroundings influencing each emitter. It is much harder for many solid-state emitters to build up phase coherence and collectively interact with photons like cold atoms. We could use cold atoms trapped on the circuit to study new collective effects,” Hung continues.

The platform demonstrated in this research could provide a photonic link for future distributed quantum computing based on neutral atoms. It could also serve as a new experimental platform for studying collective light-matter interactions and for synthesizing quantum degenerate trapped gases or ultracold molecules.

Continue reading “Researchers trap atoms, force them to serve as photonic transistors” »

Aug 2, 2024

Weaving Light: Unraveling the Quantum Lattice of Kagome Metals

Posted by in categories: nanotechnology, quantum physics

A study focused on cesium vanadium antimonide, a Kagome metal, has shown its potential in enhancing nano-optics by generating unique plasmon polaritons. These findings could advance optical communication and sensing technologies.

In traditional Japanese basket-weaving, the ancient “Kagome” design, notable for its symmetrical arrangement of interlaced triangles with shared corners, graces many handcrafted items. Similarly, in quantum physics, scientists use the term “Kagome” to refer to a category of materials whose atomic structures mimic this unique lattice pattern.

Since 2019, when the latest family of Kagome metals was discovered, physicists have been working to better understand their properties and potential applications. A new study led by Florida State University (FSU) Assistant Professor of Physics Guangxin Ni focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons — nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves. The work was published recently in the journal Nature Communications.

Aug 2, 2024

Cold antimatter for quantum state-resolved precision measurements

Posted by in categories: innovation, quantum physics

Why does the universe contain matter and (virtually) no antimatter? The BASE international research collaboration at the European Organization for Nuclear Research (CERN) in Geneva, headed by Professor Dr. Stefan Ulmer from Heinrich Heine University Düsseldorf (HHU), has achieved an experimental breakthrough in this context.

Aug 2, 2024

Experiment uses quantum techniques to stimulate photons, enhancing search for dark matter

Posted by in categories: cosmology, particle physics, quantum physics

Scientists cannot observe dark matter directly, so to “see” it, they look for signals that it has interacted with other matter by creating a visible photon. However, signals from dark matter are incredibly weak. If scientists can make a particle detector more receptive to these signals, they can increase the likelihood of discovery and decrease the time to get there. One way to do this is to stimulate the emission of photons.

Aug 2, 2024

Stacked up against the rest: 2D nano-semiconductors advancing quantum technology

Posted by in categories: computing, nanotechnology, quantum physics

Quantum technology is quantifiable in qubits, which are the most basic unit of data in quantum computers. The operation of qubits is affected by the quantum coherence time required to maintain a quantum wave state.

Aug 2, 2024

Quantum Computers Need a Quantum Internet: Here’s Why

Posted by in categories: computing, internet, particle physics, quantum physics

Research on quantum internet technology highlights the challenge of producing stable photons at telecom wavelengths, with recent studies focusing on material improvements and advanced emission techniques to enhance quantum network efficiency.

Computers benefit greatly from being connected to the internet, so we might ask: What good is a quantum computer without a quantum internet?

The secret to our modern internet is the ability for data to remain intact while traveling over long distances, and the best way to achieve that is by using photons. Photons are single units (“quanta”) of light. Unlike other quantum particles, photons interact very weakly with their environment. That stability also makes them extremely appealing for carrying quantum information over long distances, a process that requires maintaining a delicate state of entanglement for an extended period of time. Such photons can be generated in a variety of ways. One possible method involves using atomic-scale imperfections (quantum defects) in crystals to generate single photons in a well-defined quantum state.

Aug 2, 2024

Quantum computers could slash the energy use of cryptocurrencies

Posted by in categories: bitcoin, computing, cryptocurrencies, quantum physics

Mining cryptocurrencies like bitcoin could be done using quantum computers, cutting their electricity use by 90 per cent.

By Alex Wilkins

Aug 1, 2024

Nerve fibres in the brain could generate quantum entanglement

Posted by in categories: neuroscience, particle physics, quantum physics

Calculations show that nerve fibres in the brain could emit pairs of entangled particles, and this quantum phenomenon might explain how different parts of the brain work together.

By Karmela Padavic-Callaghan

Aug 1, 2024

“Simulation Hypothesis” has leaped into quantum lab experiments

Posted by in categories: computing, quantum physics

Have you ever considered the possibility that our reality might be an intricately crafted computer simulation? There is a name for this theory — Simulation Hypothesis — and it is now being tested in quantum lab experiments.

Though it may initially resemble a plot from the latest sci-fi blockbuster, a dedicated group of researchers is rigorously exploring this intriguing concept.

They are investigating the philosophical implications and technological advancements that could render such a simulation plausible.

Aug 1, 2024

Can quantum particles mimic gravitational waves?

Posted by in categories: cosmology, particle physics, quantum physics

When two black holes collide, space and time shake and energy spreads out like ripples in a pond. These gravitational waves, predicted by Einstein in 1916, were observed for the first time by the Laser Interferometer Gravitational-Wave Observatory (LIGO) telescope in September 2015.

Page 56 of 838First5354555657585960Last