Toggle light / dark theme

While traditional computers use magnetic bits to represent a one or a zero for computation, quantum computers use quantum bits or qubits to represent a one or a zero or simultaneously any number in between.

Today’s quantum computers use several different technologies for qubits. But regardless of the technology, a common requirement for all quantum computing qubits is that it must be scalable, high quality, and capable of fast quantum interaction with each other.

IBM uses superconducting qubits on its huge fleet of about twenty quantum computers. Although Amazon doesn’t yet have a quantum computer, it plans to build one using superconducting hardware. Honeywell and IonQ both use trapped-ion qubits made from a rare earth metal called ytterbium. In contrast, Psi Quantum and Xanadu use photons of light.

Atom computing chose to use different technology — nuclear-spin qubits made from neutral atoms. Phoenix, the name of Atom’s first-generation, gate-based quantum computer platform, uses 100 optically trapped qubits.

Full Story:


Atom Computing describes itself as “a company obsessed with building the world’s most scalable quantum computers out of optically trapped neutral atoms.” The company recently revealed it had spent the past two years secretly building a quantum computer using Strontium atoms as its units of computation.

Fundamental Research On Ethical & Trustworthy Artificial Intelligence, For Health, Environment, And A Sustainable Future — Dr. Patrick van der Smagt, Ph.D., Director, ArtificiaI Intelligence Research, Volkswagen.


Dr. Patrick van der Smagt is Director of ArtificiaI Intelligence Research, Volkswagen AG, and Head of Argmax. AI (https://argmax.ai/), the Volkswagen Group Machine Learning Research Lab, in Munich, focusing on a range of research domains, including probabilistic deep learning for time series modelling, optimal control, reinforcement learning robotics, and quantum machine learning.

Dr. van der Smagt is also a research professor in the Computer Science faculty at Eötvös Loránd University in Budapest.

Dr. van der Smagt previously directed a lab as professor for machine learning and biomimetic robotics at the Technical University of Munich while leading the machine learning group at the research institute fortiss, and before that, founded and headed the Assistive Robotics and Bionics Lab at DLR, the German Aerospace Center.

Besides publishing numerous papers and patents on machine learning, robotics, and motor control, Dr. van der Smagt has won a number of awards, including the 2013 Helmholtz-Association Erwin Schrödinger Award, the 2014 King-Sun Fu Memorial Award, the 2013 Harvard Medical School/MGH Martin Research Prize, the 2018 Webit Best Implementation of AI Award, and best-paper awards at various machine learning and robotics conferences and journals.

IBM’s new Quantum Computer breaks the current world record in terms of Qubits and ushers in a new era of quantum supremacy. It’s also IBM’s last chance of potentially undoing its rise and fall among the biggest tech companies in the world that has been occuring these last few years. The Eagle Quantum computer has 127 qubits and can outperform the fastest supercomputers in the world in certain tasks and calculations. Whether or not Google’s Quantum AI company will come back from behind is currently uncertain. But one thing is for sure: The future of Quantum Computers does look very bright.

TIMESTAMPS:
00:00 IBM’s Last Chance.
01:23 The competetive field of Quantum Computing.
02:19 How this Quantum Computer was made.
04:00 What is Neven’s Law?
06:35 And the goal of all this is…
09:22 Last Words.

#ibm #quantumcomputer #ai

At long last, physicists from Harvard and MIT have found the killer application for quantum computing: a Mario Bros. GIF made from qubits. The qubits (quantum bits) can also be arranged in a Space Invaders design, or Tetris, or any other shape—your geometrical wish is the qubits’ command.

The GIFs are from QuEra Computing, a Boston startup emerging from stealth, to show off the programmability of their 256-qubit quantum simulator —a special-purpose quantum computer built for solving certain types of problems.

OAKLAND, Calif. Nov 17 (Reuters) — A new quantum computer startup born from researchers at Harvard University and Massachusetts Institute of Technology (MIT) called QuEra Computing said on Wednesday it raised $17 million from investors, including Japanese e-commerce giant Rakuten Inc (4755.T).

It’s the latest quantum computer hardware maker to come out of the lab at a time when funding for the nascent technology is booming. read more

While there are various technologies for creating so-called quantum bits or qubits where the computations happen, QuEra’s qubits use neutral atoms in a vacuum chamber and use lasers to cool and control them.

MIT physicists and colleagues have demonstrated an exotic form of superconductivity in a new material the team synthesized only about a year ago. Although predicted in the 1960s, until now this type of superconductivity has proven difficult to stabilize. Further, the scientists found that the same material can potentially be manipulated to exhibit yet another, equally exotic form of superconductivity.

The work was reported in the Nov. 3 issue of the journal Nature.

The demonstration of finite momentum superconductivity in a layered crystal known a natural superlattice means that the material can be tweaked to create different patterns of superconductivity within the same sample. And that, in turn, could have implications for and more.

In quantum mechanics, counterfactual behaviours are generally associated with particles being affected by events taking place where they can’t be found. Here, the authors consider extended quantum Cheshire cat scenarios where a particle can be influenced in regions where only its disembodied property has entered.