Toggle light / dark theme

Measuring the quantum W state

Kyoto, Japan — The concept of quantum entanglement is emblematic of the gap between classical and quantum physics. Referring to a situation in which it is impossible to describe the physics of each photon separately, this key characteristic of quantum mechanics defies the classical expectation that each particle should have a reality of its own, which gravely concerned Einstein. Understanding the potential of this concept is essential for the realization of powerful new quantum technologies.

Engineers Bring Quantum Internet to Commercial Fiber for the First Time

A new integrated chip demonstrates how quantum networks could communicate using today’s internet protocols over existing commercial fiber-optic cables. In a groundbreaking experiment, engineers at the University of Pennsylvania successfully extended quantum networking beyond the laboratory by tra

CEA-Leti to Present Breakthrough Toward Ultra-Compact, High-Resolution AR/VR Displays at MicroLED Connect Conference

Interesting.


GRENOBLE, France – Sept. 16, 2025 – CEA-Leti and the Centre for Research on Heteroepitaxy and its Applications (CRHEA) today announced R&D results that have cleared a path toward full-color microdisplays based on a single material system, a long-standing goal for augmented and virtual reality (AR/VR) technologies.

The project, presented in a paper published in Nature Communications Materials, developed a technique for growing high-quality InGaN-based quantum wells on sub-micron nanopyramids, enabling native emission of red, green, and blue (RGB) light from a single material system. Titled “Regular Red-Green-Blue InGaN Quantum Wells With In Content Up To 40% Grown on InGaN Nanopyramids”, the paper will be presented at the MicroLED Connect Conference on Sept. 24, in Eindhoven, the Netherlands.

Microdisplays for immersive devices require bright RGB sub-pixels smaller than 10 × 10 microns. According to the paper, “the use of III-nitride materials promises high efficiency micro-light emitting diodes (micro-LEDs) compared to their organic counterparts. However, for such a pixel size, the pick and place process is no longer suitable for combining blue and green micro-LEDs from III-nitrides and red micro-LEDs from phosphide materials on the same platform.” Red-emitting phosphide micro-LEDs also suffer from efficiency losses at small sizes, while color conversion methods face challenges in deposition precision and stability.

‘Like talking on the telephone’: Quantum computing engineers get atoms chatting long distance

UNSW engineers have made a significant advance in quantum computing: they created ‘quantum entangled states’—where two separate particles become so deeply linked they no longer behave independently—using the spins of two atomic nuclei. Such states of entanglement are the key resource that gives quantum computers their edge over conventional ones.

The research is published in the journal Science, and is an important step toward building large-scale quantum computers—one of the most exciting scientific and technological challenges of the 21st century.

Lead author Dr. Holly Stemp says the achievement unlocks the potential to build the future microchips needed for quantum computing using existing technology and manufacturing processes.

Magnetic tunnel junctions mimic synapse behavior for energy-efficient neuromorphic computing

The rapid development of artificial intelligence (AI) poses challenges to today’s computer technology. Conventional silicon processors are reaching their limits: they consume large amounts of energy, the storage and processing units are not interconnected and data transmission slows down complex applications.

As the size of AI models is constantly increasing and they are having to process huge amounts of data, the need for new computing architectures is rising. In addition to quantum computers, focus is shifting, in particular, to neuromorphic concepts. These systems are based on the way the works.

This is where the research of a team led by Dr. Tahereh Sadat Parvini and Prof. Dr. Markus Münzenberg from the University of Greifswald and colleagues from Portugal, Denmark and Germany began. They have found an innovative way to make computers of tomorrow significantly more energy-efficient. Their research centers around so-called magnetic tunnel junctions (MTJs), tiny components on the nanometer scale.

‘Quantum squeezing’ a nanoscale particle for the first time

Researchers Mitsuyoshi Kamba, Naoki Hara, and Kiyotaka Aikawa of the University of Tokyo have successfully demonstrated quantum squeezing of the motion of a nanoscale particle, a motion whose uncertainty is smaller than that of quantum mechanical fluctuations.

As enhancing the measurement precision of sensors is vital in many modern technologies, the achievement paves the way not only for basic research in fundamental physics but also for applications such as accurate autonomous driving and navigation without a GPS signal. The findings are published in the journal Science.

The physical world at the macroscale, from to planets, is governed by the laws of discovered by Newton in the 17th century. The physical world at the microscale, atoms and below, is governed by the laws of quantum mechanics, which lead to phenomena generally not observed at the macroscale.

Physicist proves unsolvability beyond one dimension for quantum Ising models

By extending a proof of a physically important behavior in one-dimensional quantum spin systems to higher dimensions, a RIKEN physicist has shown in a new study that the model lacks exact solutions. The research is published in the journal Physical Review B.

Theoretical physicists develop mathematical models to describe material systems, which they can then use to make predictions about how materials will behave.

One of the most important models is the Ising model, which was first developed about a century ago to model such as iron and nickel.

Physicists create new electrically controlled silicon-based quantum device

A team of scientists at Simon Fraser University’s Quantum Technology Lab and leading Canada-based quantum company Photonic Inc. have created a new type of silicon-based quantum device controlled both optically and electrically, marking the latest breakthrough in the global quantum computing race.

The research, published in the journal Nature Photonics, reveals new diode nanocavity devices for electrical control over silicon color center qubits.

The devices have achieved the first-ever demonstration of an electrically-injected single-photon source in silicon. The breakthrough clears another hurdle toward building a quantum computer—which has enormous potential to provide computing power well beyond that of today’s supercomputers and advance fields like chemistry, materials science, medicine and cybersecurity.

/* */