БЛОГ

Archive for the ‘quantum physics’ category: Page 6

Jun 5, 2019

Quantum Leaps, Long Assumed to Be Instantaneous, Take Time

Posted by in category: quantum physics

An experiment caught a quantum system in the middle of a jump — something the originators of quantum mechanics assumed was impossible.

Read more

Jun 3, 2019

Why Quantum Computing Requires Quantum Cryptography

Posted by in categories: computing, encryption, internet, quantum physics

Quantum computing is cool, but you know what would be extra awesome — a quantum internet. In fact if we want the first we’ll need the latter. And the first step to the quantum internet is quantum cryptography.

Aired: 05/31/19

Read more

Jun 3, 2019

Quantum leaps are real – and now we can control them

Posted by in categories: computing, quantum physics

Quantum leaps are generally assumed to be instantaneous, but researchers have figured out how to intercept them midway, which may be useful in quantum computing.

Read more

Jun 3, 2019

Physicists can predict the jumps of Schrodinger’s cat (and finally save it)

Posted by in categories: particle physics, quantum physics

Yale researchers have figured out how to catch and save Schrödinger’s famous cat, the symbol of quantum superposition and unpredictability, by anticipating its jumps and acting in real time to save it from proverbial doom. In the process, they overturn years of cornerstone dogma in quantum physics.

The discovery enables researchers to set up an early warning system for imminent jumps of artificial atoms containing quantum information. A study announcing the discovery appears in the June 3 online edition of the journal Nature.

Schrödinger’s cat is a well-known paradox used to illustrate the concept of superposition—the ability for two opposite states to exist simultaneously—and unpredictability in . The idea is that a cat is placed in a sealed box with a radioactive source and a poison that will be triggered if an atom of the radioactive substance decays. The superposition theory of quantum physics suggests that until someone opens the box, the cat is both alive and dead, a superposition of states. Opening the box to observe the cat causes it to abruptly change its randomly, forcing it to be either dead or alive.

Continue reading “Physicists can predict the jumps of Schrodinger’s cat (and finally save it)” »

Jun 2, 2019

D-Wave previews quantum computing platform with over 5,000 qubits

Posted by in categories: computing, quantum physics

D-Wave Systems today unveiled the roadmap for its 5,000-qubit quantum computer. Components of D-Wave’s next-generation quantum computing platform will come to market between now and mid-2020 via ongoing quantum processing unit (QPU) and cloud-delivered software updates. The complete system will be available through cloud access and for on-premise installation in mid-2020.

Binary digits (bits) are the basic units of information in classical computing while quantum bits (qubits) make up quantum computing. Bits are always in a state of 0 or 1, while qubits can be in a state of 0, 1, or a superposition of the two. Quantum computing leverages qubits to perform computations that would be much more difficult for a classical computer. Based in Burnaby, Canada, D-Wave has been developing its own quantum computers that use quantum annealing.

D-Wave is mainly focused on solving optimization problems, so its quantum computers can’t be directly compared to the competition. Indeed, many have questioned whether D-Wave’s systems have quantum properties, and thus performance that classical computers can’t match. In the meantime, D-Wave continues to improve and sell its systems.

Continue reading “D-Wave previews quantum computing platform with over 5,000 qubits” »

Jun 2, 2019

Quantum magnonics: magnon meets superconducting qubit

Posted by in category: quantum physics

The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of ferromagnetic insulator. We demonstrate.

In the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon-vacuum-induced Rabi splitting.

The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons.

Read more

Jun 2, 2019

Quantum symmetry breaking demonstrated for the first time

Posted by in category: quantum physics

Quantum symmetry breaking has been demonstrated in the lab for the first time — with startling implications for the ability to better control quantum systems.

Read more

Jun 1, 2019

I wanted to have a long running post where i will be tracking serious papers about time travel

Posted by in categories: computing, information science, quantum physics, time travel

Also, loosely following technology that could be used to build a real working time machine. Anyone with an interest in time travel is welcome to participate.

But, I have been watching tech news for what could be used to build a time machine. I think we are pretty close. You’d still need a few physics guys with 150+ IQ’s to work on the equations, a guy with a 200+ IQ to figure out how to put the whole thing together, and a guy with billions of dollars to fund it. But most of this stuff is for sale to the public, (short list):

1. quantum computer; to run the calculations.

Continue reading “I wanted to have a long running post where i will be tracking serious papers about time travel” »

May 31, 2019

Fault-Tolerant Error Correction with Efficient Quantum Codes

Posted by in category: quantum physics

We exhibit a simple, systematic procedure for detecting and correcting errors using any of the recently reported quantum error-correcting codes. The procedure is shown explicitly for a code in which one qubit is mapped into five. The quantum networks obtained are fault tolerant, that is, they can function successfully even if errors occur during the error correction. Our construction is derived using a recently introduced group-theoretic framework for unifying all known quantum codes.

Continue reading “Fault-Tolerant Error Correction with Efficient Quantum Codes” »

May 31, 2019

Quantum gate teleportation between separated qubits in a trapped-ion processor

Posted by in categories: computing, quantum physics

Gating—controlling the state of one qubit conditioned on the state of another—is a key procedure in all quantum information processors. As the scale of quantum processors increases, the qubits will need to interact over larger and larger distances, which presents an experimental challenge in solid-state architectures. Wan et al. implemented the 20-year-old theoretical proposal of quantum gate teleportation that allows separated qubits to interact effectively. They deterministically teleported a controlled-NOT gate between two computational qubits in spatially separated zones in a segmented ion trap, demonstrating a feasible route toward scalable quantum information processors.

Science, this issue p. 875

Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap. The entanglement fidelity of our teleported CNOT is in the interval (0.845, 0.872) at the 95% confidence level. The implementation combines ion shuttling with individually addressed single-qubit rotations and detections, same- and mixed-species two-qubit gates, and real-time conditional operations, thereby demonstrating essential tools for scaling trapped-ion quantum computers combined in a single device.

Continue reading “Quantum gate teleportation between separated qubits in a trapped-ion processor” »

Page 6 of 220First345678910Last