The speed of computation in a neutral-atom quantum computer is increased through the use of steerable excitation beams and fast, nondestructive state readout.
The simulation of quantum systems and the development of systems that can perform computations leveraging quantum mechanical effects rely on the ability to arrange atoms in specific patterns with high levels of precision. To arrange atoms in ordered patterns known as arrays, physicists typically use optical tweezers, highly focused laser beams that can trap particles.
While quantum computers are already being used for research in chemistry, material science, and data security, most are still too small to be useful for large-scale applications. A study led by researchers at the University of California, Riverside, now shows how “scalable” quantum architectures—systems made up of many small chips working together as one powerful unit—can be made.
An incredible breakthrough brings quantum-scale precision sensing to living biological systems.
Quantum dots – semiconductor nanostructures that can emit single photons on demand – are considered among the most promising sources for photonic quantum computing.
However, every quantum dot is slightly different and may emit a slightly different color, according to a team at the University of Innsbruck, Austria, which has developed a technique to improve multi-photon state generation. The Innsbruck team states that, “the different forms of quantum dot means that, to produce multi-photon states we cannot use multiple quantum dots.”
Usually, researchers use a single quantum dot and multiplex the emission into different spatial and temporal modes, using a fast electro-optic modulator. But a contemporary technological challenge: faster electro-optic modulators are expensive and often require very customized engineering. To add to that, it may not be very efficient, which introduces unwanted losses in the system.
Nature Publishing: https://www.nature.com/articles/s41534-025-01083-0
Security wise: The team’s work combines years of research in quantum optics, semiconductor physics, and photonic engineering to open the door for next-generation quantum computers andunwanted losses in the system.
Communications. Here’s what you need to know. Securities IO: https://www.securities.io/passive-two-photon-quantum-dots-secure-communication
Researchers have developed QuantumShield-BC, a blockchain framework designed to resist attacks from quantum computers by integrating post-quantum cryptography (PQC) utilising algorithms such as Dilithium and SPHINCS+, quantum key distribution (QKD), and quantum Byzantine fault tolerance (Q-BFT) leveraging quantum random number generation (QRNG) for unbiased leader selection. The framework was tested on a controlled testbed with up to 100 nodes, demonstrating resistance to simulated quantum attacks and achieving fairness through QRNG-based consensus. An ablation study confirmed the contribution of each quantum component to overall security, although the QKD implementation was simulated and scalability to larger networks requires further investigation.