To fully embrace the benefits of quantum computing in the future, we need to focus on education and workforce development and become quantum-ready today.
The 13-year-old daughter of a friend visiting my workplace — the IBM Research lab in Zurich — seemed puzzled. She knew I worked in a research lab and I that work with computers, but the computers she knows don’t typically resemble the chandelier-like structure that hung from the ceiling in front of us.
Yet, it is a computer – a quantum computer. And while someone in their early teens right now can be excused for not knowing what a quantum computer is, I would very much like that to change.
A special form of light made using an ancient Namibian gemstone could be the key to new light-based quantum computers, which could solve long-held scientific mysteries, according to new research led by the University of St Andrews.
The research, conducted in collaboration with scientists at Harvard University in the US, Macquarie University in Australia and Aarhus University in Denmark and published in Nature Materials, used a naturally mined cuprous oxide (Cu2O) gemstone from Namibia to produce Rydberg polaritons, the largest hybrid particles of light and matter ever created.
Rydberg polaritons switch continually from light to matter and back again. In Rydberg polaritons, light and matter are like two sides of a coin, and the matter side is what makes polaritons interact with each other.
For World Quantum Day, the Google Quantum AI team is introducing people to the world of quantum computing by teaming up with Doublespeak Games to make The Qubit Game, a journey into quantum computing.
Types of measurements can be further distinguished by how the sum of the three types of information compares to the information in the quantum state. Whereas optimal measurements preserve the total information in the quantum state, such that it is entirely split between the three types, in non-optimal measurements some information is lost. This lost information can be due to noise in the experiment or inefficient estimates of the original quantum state. Yet sometimes it is inherent in the quantum measurement itself. Such inescapable information loss in non-optimal measurements could give insights into how the classical world appears to emerge from quantum measurements.
Preserving three-way information using photons
In their experimental study, which is published in Physical Review Letters, Seongjin Hong and colleagues at the Korea Institute of Science and Technology and the Korea Institute for Advanced Study showed how the information about a quantum state splits into these three parts. The researchers used photons to experimentally demonstrate information-preserving optimal measurements in which each photon could be in one of three possible states. They then used optical components to perform measurement and reversing operations on the photons, before characterizing their final states and demonstrating the quantitative balance between the three information types.
Existing quantum devices can actually do things that we cannot compute with classical computers. The question is only can we harness this computational power that is apparently there,” van Bijnen says. “Maybe doing arbitrary computational problems is a bit much to ask, so we are now looking at whether we can match problems well to available quantum hardware.” Many current experiments involving Rydberg atoms would likely not require any radical changes in instrumentation that is already being used, he adds.
Milling rice to separate the grain from the husks produces about 100 million tons of rice husk waste globally each year. Scientists searching for a scalable method to fabricate quantum dots have developed a way to recycle rice husks to create the first silicon quantum dot (QD) LED light. Their new method transforms agricultural waste into state-of-the-art light-emitting diodes in a low-cost, environmentally friendly way.
The research team from the Natural Science Center for Basic Research and Development, Hiroshima University, published their findings on January 28, 2022, in the American Chemical Society journal ACS Sustainable Chemistry & Engineering.
“Since typical QDs often involve toxic material, such as cadmium, lead, or other heavy metals, environmental concerns have been frequently deliberated when using nanomaterials. Our proposed process and fabrication method for QDs minimizes these concerns,” said Ken-ichi Saitow, lead study author and a professor of chemistry at Hiroshima University.
*Based on The Cybernetic Theory of Mind eBook series (2022) by evolutionary cyberneticist Alex M. Vikoulov, available on Amazon:
as well as his magnum opus The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution (2020), available as eBook, paperback, hardcover, and audiobook on Amazon:
“You can’t explain consciousness in terms of classical physics or neuroscience alone. The best description of reality should be monistic. Quantum physics and consciousness are thus somehow linked by a certain mechanism… It is consciousness that assigns measurement values to entangled quantum states (qubits-to-digits of qualia, if you will). If we assume consciousness is fundamental, most phenomena become much easier to explain.
The Mind-Body dilemma has been known ever since René Descartes as Cartesian Dualism and later has been reformulated by the Australian philosopher David Chalmers as the ‘hard problem’ of consciousness. Western science and philosophy have been trying for centuries now, rather unsuccessfully, to explain how mind emerges from matter while Eastern philosophy dismisses the hard problem of consciousness altogether by teaching that matter emerges from mind. The premise of Experiential Realism is that the latter must be true: Despite our common human intuitions, Mind over Matter proves to be valid again and again in quantum physics experiments.
From the Digital Physics perspective, particles of matter are pixels, or voxels if you prefer, on the screen of our perception. Your Universe is in consciousness. And it’s a teleological process of unfolding patterns, evolution of your core self, ‘non-local’ consciousness instantiating into the phenomenal mind for the duration of a lifetime.
Quantum computers, machines that leverage quantum states to perform computations and store data, could soon revolutionize the computing industry, achieving significantly greater speeds and performance than existing computers. While countless companies worldwide, including Google and IBM as well as smaller start-ups, have started working on quantum technologies, the exact architecture that will lead to their mass production remains unclear.
Researchers at Leibniz University Hannover have recently conducted a theoretical study investigating the possibility of realizing flying-qubit gates for quantum computers that are insensitive to the wave shapes of photons, and also fully preserve these shapes during processing. Their paper, published in Physical Review Letters, could serve as the basis for the development of new gates that can process entangled photonic wave packets more effectively than unentangled ones.
“There are several candidate architectures for the development of quantum technology, including superconductors, ion traps, solid state, optical, and so on,” Ihar Babushkin, one of the researchers who carried out the study, told Phys.org. “Regardless of what architecture we consider, photons, the quanta of light, will play an important role, since in almost all architectures the mediators between quantum information bits (qubits) are photons.”