Archive for the ‘quantum physics’ category: Page 658
Mar 11, 2019
Using quantum measurements to fuel a cooling engine
Posted by Genevieve Klien in categories: computing, quantum physics
Researchers at the University of Florence and Istituto dei Sistemi Complessi, in Italy, have recently proved that the invasiveness of quantum measurements might not always be detrimental. In a study published in Physical Review Letters, they showed that this invasive quality can actually be exploited, using quantum measurements to fuel a cooling engine.
Michele Campisi, one of the researchers involved in the study, has been studying quantum phenomena for several years. In his recent work, he investigated whether quantum phenomena can impact the thermodynamics of nanoscopic devices, such as those employed in quantum computers.
“Most colleagues in the field were looking at coherence and entanglement while only few were looking at another at genuine quantum phenomenon, i.e., the quantum measurement process,” Campisi told Phys.org. “Those studies suggested that you need to accompany measurements with feedback control, as in Maxwell’s demon, in order to exploit their potential. I started thinking about it, and eureka—since quantum measurements are very invasive, they are accompanied by energy exchanges, hence can be used to power engines without the need to do feedback control.”
Mar 11, 2019
Researchers Tune in to Smallest Radio Frequency in Quantum Mechanics
Posted by Genevieve Klien in category: quantum physics
Mar 7, 2019
Physicists Want to Use Quantum Particles to Find Out What Happens Inside a Black Hole
Posted by Genevieve Klien in categories: cosmology, particle physics, quantum physics
A new method for analysing the entanglement of scrambled particles could tell us how the Universe still keeps track of information contained by particles that disappear into black holes. It won’t get our quantum information back, but it might at least tell us what happened to it.
Physicists Beni Yoshida from the Perimeter Institute in Canada and Norman Yao from the University of California, Berkeley, have proposed a way to distinguish scrambled quantum information from the noise of meaningless chaos.
While the concept promises a bunch of potential applications in the emerging field of quantum technology, it’s in understanding what’s going on inside the Universe’s most paradoxical places that it might have its biggest pay-off.
Mar 7, 2019
Enter The Quantum World: What The Mechanics Of Subatomic Particles Mean For The Study Of UAP, Our Universe, And Beyond
Posted by Derick Lee in categories: business, government, particle physics, quantum physics
Then the 2017 DoD disclosure occurred, directly contradicting the findings in the Condon Report. We realized we had not discovered all there was to discover — not by a long shot.
AATIP succeeded where others failed simply because our understanding of the physics finally caught up to our observations.
Today, much of our government’s business is conducted behind closed doors, and mostly for good reason.
Mar 6, 2019
The Math That Takes Newton Into the Quantum World
Posted by Genevieve Klien in categories: information science, mathematics, quantum physics, transportation
In my 50s, too old to become a real expert, I have finally fallen in love with algebraic geometry. As the name suggests, this is the study of geometry using algebra. Around 1637, René Descartes laid the groundwork for this subject by taking a plane, mentally drawing a grid on it, as we now do with graph paper, and calling the coordinates x and y. We can write down an equation like x + y = 1, and there will be a curve consisting of points whose coordinates obey this equation. In this example, we get a circle!
It was a revolutionary idea at the time, because it let us systematically convert questions about geometry into questions about equations, which we can solve if we’re good enough at algebra. Some mathematicians spend their whole lives on this majestic subject. But I never really liked it much until recently—now that I’ve connected it to my interest in quantum physics.
If we can figure out how to reduce topology to algebra, it might help us formulate a theory of quantum gravity.
Continue reading “The Math That Takes Newton Into the Quantum World” »
Mar 6, 2019
Can entangled qubits be used to probe black holes?
Posted by Genevieve Klien in categories: computing, cosmology, quantum physics
Physicists have used a seven-qubit quantum computer to simulate the scrambling of information inside a black hole, heralding a future in which entangled quantum bits might be used to probe the mysterious interiors of these bizarre objects.
Mar 6, 2019
More evidence of sound waves carrying mass
Posted by Xavier Rosseel in categories: energy, quantum physics
A trio of researchers at Columbia University has found more evidence showing that sound waves carry mass. In their paper published in the journal Physical Review Letters, Angelo Esposito, Rafael Krichevsky and Alberto Nicolis describe using effective field theory techniques to confirm the results found by a team last year attempting to measure mass carried by sound waves.
For many years physicists have felt confident that sound waves carry energy—but there was no evidence to suggest they also carry mass. There seemed to be no reason to believe that they would generate a gravitational field. But that changed last year when Nicolis and another physicist Riccardo Penco found evidence that suggested conventional thinking was wrong. They had used quantum field theory to show that sound waves moving through superfluid helium carried a small amount of mass with them. More specifically, they found that phonons interacted with a gravitational field in a way that forced them to carry mass along as they moved through the material. In this new effort, the researchers report evidence that suggests the same results hold true for most materials.
Using effective field theory, they showed that a single-watt sound wave that moved for one second in water would carry with it a mass of approximately 0.1 milligrams. They further note that the mass was found to be a fraction of the total mass of a system that moved with the wave, as it was displaced from one site to another.
Mar 6, 2019
Inside the high-stakes race to make quantum computers work
Posted by Genevieve Klien in categories: computing, encryption, finance, quantum physics
Quantum computers could help explain some of the most fundamental mysteries in the universe and upend everything from finance to encryption – if only someone could get them to work.
Mar 5, 2019
Researchers harness mysterious Casimir force for tiny devices
Posted by Quinn Sena in categories: computing, quantum physics
Circa 2017
Getting something from nothing sounds like a good deal, so for years scientists have been trying to exploit the tiny amount of energy that arises when objects are brought very close together. It’s a source of energy so obscure it was once derided as a fanciful source of “perpetual motion.” Now, a research team including Princeton scientists has found a way to harness a mysterious force of repulsion, which is one aspect of that force.
This energy, predicted seven decades ago by the Dutch scientist Hendrik Casimir, arises from quantum effects and can be seen experimentally by placing two opposing plates very close to each other in a vacuum. At close range, the plates repel each other, which could be useful to certain technologies. Until recently, however, harnessing this “Casimir force” to do anything useful seemed impossible.
Continue reading “Researchers harness mysterious Casimir force for tiny devices” »