БЛОГ

Archive for the ‘quantum physics’ category: Page 7

Jun 22, 2024

Intel’s Millikelvin Quantum Research Control Chip Provides Denser Integration with Qubits

Posted by in categories: computing, quantum physics

Intel debuts new chip focused on addressing quantum computing’s wiring bottleneck.

Intel’s millikelvin quantum research control chip, code-named Pando Tree, establishes Intel as the first semiconductor manufacturer to demonstrate the distribution of cryogenic silicon spin qubit control electronics…


Sushil Subramanian is a research scientist at Intel where he works on integrated circuits and systems for qubit control in quantum computers. Co-author Stefano Pellerano is a senior principal engineer and lab director of the RF and Mixed-Signal Circuits Lab where he leads the research and development effort on cryogenic electronics for qubit control.

Continue reading “Intel’s Millikelvin Quantum Research Control Chip Provides Denser Integration with Qubits” »

Jun 22, 2024

Physicists propose time crystal-based circuit board to reduce quantum computing errors

Posted by in categories: computing, quantum physics

A trio of physicists, two with Uniwersytet Jagielloński in Poland and one with Swinburne University of Technology in Australia, are proposing the use of temporal printed circuit boards made using time crystals as a way to solve error problems on quantum computers. Krzysztof Giergiel, Krzysztof Sacha and Peter Hannaford have written a paper describing their ideas, which is currently available on the arXiv preprint server.

Jun 21, 2024

‘Ghost Particles’ Could Be The Secret Behind The Heaviest Elements

Posted by in categories: nuclear energy, particle physics, quantum physics

Big atoms demand big energy to construct. A new model of quantum interactions now suggests some of the lightest particles in the Universe might play a critical role in how at least some heavy elements form.

Physicists in the US have shown how subatomic ‘ghost’ particles known as neutrinos could force atomic nuclei into becoming new elements.

Not only would this be an entirely different method for building elements heavier than iron, it could also describe a long-hypothesized ‘in-between’ path that sits on the border between two known processes, nuclear fusion and nucleosynthesis.

Jun 21, 2024

Quantum computing breakthrough solves key obstacle for revolutionary tech

Posted by in categories: computing, quantum physics

In the race to develop practical quantum computers, a team of researchers has achieved a significant milestone by demonstrating a new method for manipulating quantum information. This breakthrough, published in the journal Nature Communications, could lead to faster and more efficient quantum computing by harnessing the power of customizable “nonlinearities” in superconducting circuits.

Quantum computers promise to revolutionize computing by leveraging the principles of quantum mechanics to perform complex calculations that are impossible for classical computers. However, one of the main challenges in building quantum computers is the difficulty in manipulating and controlling quantum information, known as qubits.

The researchers, led by Axel M. Eriksson and Simone Gasparinetti from Chalmers University of Technology in Sweden, have developed a novel approach that allows for greater control over qubits by using a special type of superconducting circuit called a SNAIL (Superconducting Nonlinear Asymmetric Inductive eLement) resonator.

Jun 21, 2024

Black Hole and General relativity — gravity theory ‚Einstein field ‚sch equation|Ramanujan number

Posted by in categories: cosmology, information science, quantum physics

#blackhole Physics lecture video link, just click on the link for knowledge.


Here I discused general relativity — gravitytheory, Einstein field, schwarzchild equation, Black hall definition, Ramanujan numbers. Here I explain only static blackhole.
theory of general relativity.
special relativity vs general relativity.
einstein’s theory of general relativity.
general relativity equation.
special and general relativity.
spacetime and geometry an introduction to general relativity.
general relativity vs quantum mechanics.
a first course in general relativity.
general relativity and quantum mechanics.
general relativity and gravitation.
general relativity and black holes.
general relativity and time.
general relativity and special relativity.
general relativity astronomy.
general relativity assignment.
general relativity and gravity.
a new way to visualize general relativity.
albert einstein’s theory of general relativity.
albert einstein general relativity.
applications of general relativity.
alternatives to general relativity.
a first course in general relativity 3rd edition.
advanced general relativity.
a short course in general relativity.
general relativity black holes.
general relativity basics.
general relativity course.
general relativity course online.
general relativity class.
covariant derivative general relativity.
conformal transformation general relativity.
general relativity definition.
general relativity diagram.
general relativity definition in physics.
derivation of general relativity.
general relativity examples.
general relativity equation explained.
general relativity einstein paper.
general relativity equation derivation.
equation of general relativity.
einstein paper on general relativity.
einstein 1916 paper on general relativity.
general relativity field equations.
general relativity full equation.
field equations of general relativity.
formula for general relativity.
feynman general relativity.
general relativity gravity.
general relativity graviton lance.
general relativity geodesic.
general relativity geometry.
general relativity geodesic equation.
general relativity vs special relativity.
general relativity theory.
general relativity time dilation.
general relativity history.
general relativity homework solutions.
general relativity hilbert.
general relativity hamiltonian.
what is general relativity.
history of general relativity.
how did einstein discover general relativity.
general relativity in black holes.
general relativity inertial frame.

Jun 20, 2024

Q&A: New method confines light inside an organic material to form a hybrid quantum state

Posted by in categories: materials, quantum physics

A team of international scientists led by the University of Ottawa have gone back to the kitchen cupboard to create a recipe that combines organic material and light to create quantum states.

Jun 20, 2024

High-temperature superconductivity: Exploring quadratic electron-phonon coupling

Posted by in category: quantum physics

A new study published in Physical Review Letters (PRL) explores the potential of quadratic electron-phonon coupling to enhance superconductivity through the formation of quantum bipolarons.

Jun 20, 2024

Researchers develop platform to probe, control qubits in silicon for quantum networks

Posted by in categories: internet, quantum physics

The quantum internet would be a lot easier to build if we could use existing telecommunications technologies and infrastructure. Over the past few years, researchers have discovered defects in silicon—a ubiquitous semiconductor material—that could be used to send and store quantum information over widely used telecommunications wavelengths. Could these defects in silicon be the best choice among all the promising candidates to host qubits for quantum communications?

Jun 20, 2024

Discovery of one-dimensional topological insulator for qubits, other technology

Posted by in category: quantum physics

A joint research team that included members from Tohoku University has unveiled a new topological insulator (TI), a unique state of matter that differs from conventional metals, insulators, and semiconductors.

Jun 20, 2024

An alternative way to manipulate quantum states

Posted by in categories: particle physics, quantum physics

Spin-orbit torque effects involve the transfer of angular momentum between a spin current and a magnetic layer mediated by the exchange interaction between conduction and localized electron.

Measuring these effects in magnetic materials continues to be a very active area of interest in spintronics…


Electrons have an , the so-called spin, which means that they can align themselves along a , much like a compass needle. In addition to the electric charge of electrons, which determines their behavior in electronic circuits, their spin is increasingly used for storing and processing data.

Continue reading “An alternative way to manipulate quantum states” »

Page 7 of 768First4567891011Last