An international team of scientists led by the University of Groningen’s Zernike Institute for Advanced Materials created quantum bits that emit photons that describe their state at wavelengths close to those used by telecom providers. These qubits are based on silicon carbide in which molybdenum impurities create color centers. The results were published in the journal npj Quantum Information on 1 October.
Category: quantum physics – Page 700
While the rest of the country has been transfixed by the Brett Kavanagh confirmation drama, the White House was quietly but steadily taking major steps to secure America’s high-tech future.
The first was the release of the National Cybersecurity Strategy last week, which I discussed in a previous column. This week came the National Strategic Overview for Quantum Information Science (QIS), released by a subcommittee of the Committee on Science for the National Science and Technology Council. This document is a big win for Jacob Taylor, the White House Office of Science and Technology Policy’s point man on all things quantum, and a major win for America.
During last September’s Ignite conference, Microsoft heavily emphasized its quantum computing efforts and launched both its Q# programming language and development kits.
This year, the focus is on other things, and the announcements about quantum are few and far between (and our understanding is that Microsoft, unlike some of its competitors, doesn’t have a working quantum computing prototype yet). It did, however, announce an addition to its Quantum Development Kit that brings a new chemical simulation library to tools for getting started with quantum computing.
Conventional computers store information in a bit, a fundamental unit of logic that can take a value of 0 or 1. Quantum computers rely on quantum bits, also known as a “qubits,” as their fundamental building blocks. Bits in traditional computers encode a single value, either a 0 or a 1. The state of a qubit, by contrast, can simultaneously have a value of both 0 and 1. This peculiar property, a consequence of the fundamental laws of quantum physics, results in the dramatic complexity in quantum systems.
Quantum computing is a nascent and rapidly developing field that promises to use this complexity to solve problems that are difficult to tackle with conventional computers. A key challenge for quantum computing, however, is that it requires making large numbers of qubits work together—which is difficult to accomplish while avoiding interactions with the outside environment that would rob the qubits of their quantum properties.
New research from the lab of Oskar Painter, John G Braun Professor of Applied Physics and Physics in the Division of Engineering and Applied Science, explores the use of superconducting metamaterials to overcome this challenge.
Physicists face the same hard problem as neuroscientists do: the problem of bridging objective description and subjective experience. Physics has encountered consciousness. Quantum theory says an object remains in a superposition of possibilities until observed. We can consider a quantum state as being about our knowledge rather than a direct description of physical reality. The physics of information just may be that bridging of quantum-to-digital reality of subjective experience. We are now at the historic juncture when quantum computing could reveal quantum information processing underpinnings of subjectivity. Quantum mechanics is a spectacularly successful theory of fundamental physics that allows us to make probabilistic predictions derived from its mathematical formalism, but the theory doesn’t tell us precisely how these probabilities should be interpreted in regards to phenomenology, i.e. our experiential reality. There are basically three main interpretive camps within quantum mechanics from which stem at least a dozen further interpretations.
By Alex Vikoulov.
“A quantum possibility is more real than a classical possibility, but less real than a classical reality.” –Boris Tsirelson.
WASHINGTON (Reuters) — The White House will hold a meeting on Monday on U.S. government efforts to boost quantum information science, with administration officials, leading companies including Alphabet Inc ( GOOGL.O ), IBM Corp ( IBM.N ), JPMorgan Chase & Co ( JPM.N ) and academic experts taking part.
A new way to count qubits
Posted in computing, quantum physics
Researchers at Syracuse University, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.
Their findings are the subject of an article in Science magazine, which elaborates on the experimental efforts involved with creating such a technique.
The Plourde Group—led by Britton Plourde, professor of physics in Syracuse’s College of Arts and Sciences (A&S)—specializes in the fabrication of superconducting devices and their measurement at low temperatures.
Quantum computing ‘will enable us to predict and improve chemical reactions, new materials and their properties, as well as provide new understandings of spacetime and the emergence of our universe,’ the White House said.
Google, IBM, JPMorgan Chase & Co., and other key U.S. companies are set to attend a White House quantum computing meeting to be held on Monday, Reuters reports.
A groundbreaking technology still in its infancy, quantum computing could have a major impact on transportation, healthcare, communications, weather forecasting, artificial intelligence, and other areas. Quantum computing could, experts claim, revolutionize our society.