How we achieved quantum non-local communication and what it means for consciousness
Researchers introduce a new class of twistable materials, unlocking unprecedented quantum possibilities. Twisted materials—known as moiré structures—have revolutionized modern physics, emerging as today’s “alchemy” by creating entirely new phases of matter through simple geometric manipulation. The term “moiré” may sound familiar—it describes the st
PRESS RELEASE — Quantum computers have operated under a significant limitation: they can run only one program at a time. These million-dollar machines demand exclusive use even for the smallest tasks, leaving much of their expensive and fast-running hardware idle and forcing researchers to endure long queues.
Columbia Engineering researchers have developed HyperQ, a novel system that enables multiple users to share a single quantum computer simultaneously through isolated quantum virtual machines (qVMs). This key development brings quantum computing closer to real-world usability—more practical, efficient, and broadly accessible.
“HyperQ brings cloud-style virtualization to quantum computing,” said Jason Nieh, professor of computer science at Columbia Engineering and co-director of the Software Systems Laboratory. “It lets a single machine run multiple programs at once—no interference, no waiting in line.”
In physics, there are two great pillars of thought that don’t quite fit together. The Standard Model of particle physics describes all known fundamental particles and three forces: electromagnetism, the strong nuclear force, and the weak nuclear force. Meanwhile, Einstein’s general relativity describes gravity and the fabric of spacetime.
However, these frameworks are fundamentally incompatible in many ways, says Jonathan Heckman, a theoretical physicist at the University of Pennsylvania. The Standard Model treats forces as dynamic fields of particles, while general relativity treats gravity as the smooth geometry of spacetime, so gravity “doesn’t fit into physics’s Standard Model,” he explains.
In a recent paper in Physical Review Research, Heckman, Rebecca Hicks, a Ph.D. student at Penn’s School of Arts & Sciences, and their collaborators turn that critique on its head. Instead of asking what string theory predicts, the authors ask what it definitively cannot create. Their answer points to a single exotic particle that could show up at the Large Hadron Collider (LHC). If that particle appears, the entire string-theory edifice would be, in Heckman’s words, “in enormous trouble.”
A quantum battery operates on the principles of quantum mechanics, diverging from traditional batteries which rely on ion flow for charging and discharging. In quantum batteries, energy is stored by moving electrons into higher energy states with photons acting as charge carriers. During charging, photons transfer their energy to electrons, enabling storage.
Key quantum properties, such as entanglement and superabsorption, are harnessed to enhance the charging rate. Entanglement allows particles to function cohesively during the charging or discharging process, while superabsorption increases the energy storage capacity, leading to higher energy densities. Despite their theoretical potential and scalability, practical quantum batteries have faced challenges, with existing prototypes unable to sustain energy beyond a few nanoseconds.
Since its development 100 years ago, quantum mechanics has revolutionized our understanding of nature, revealing a bizarre world in which an object can act like both waves and particles, and behave differently depending on whether it is being watched.
In recent decades, researchers exploring this wave-particle duality have learned to measure the relative “wave-ness” and “particle-ness” of quantum objects, helping to explain how and when they veer between wave-like or particle-like behaviors.
Now, in a paper for Physical Review Research, researchers at the Stevens Institute of Technology report an important new breakthrough: a simple but powerful formula that describes the precise closed mathematical relationship between a quantum object’s “wave-ness” and “particle-ness.”
As the photons traveled along the waveguide and tunneled into the barrier, they also tunneled into the secondary waveguide, jumping back and forth between the two at a consistent rate, allowing the research team to calculate their speed.
By combining this element of time with measurements of the photon’s rate of decay inside the barrier, the researchers were able to calculate dwell time, which was found to be finite.
The researchers write, “Our findings contribute to the ongoing tunneling time debate and can be viewed as a test of Bohmian trajectories in quantum mechanics. Regarding the latter, we find that the measured energy–speed relationship does not align with the particle dynamics postulated by the guiding equation in Bohmian mechanics.”