БЛОГ

Archive for the ‘quantum physics’ category: Page 800

Feb 29, 2016

Sharing secrets with light

Posted by in categories: finance, quantum physics

More great news on Quantum Networks; some banks in Europe are leveraging the technology to communicate among themselves.


Light is everywhere. Even the darkest of rooms in our homes contain a handful of blinking LEDs. But what is light? Few of us ever stop to think about this question. Around a hundred years ago scientists discovered that light comes in granules, much like the sand on a beach, which we now call photons.

These are truly bizarre objects that obey the rules of the quantum world. The rules allow some pairs of photons to share a property called entanglement. After being entangled, two photons behave as one object. Changing one photon will affect the other at exactly the same time, no matter how far apart they are.

Continue reading “Sharing secrets with light” »

Feb 29, 2016

Quantum dot solids: a new era in electronics?

Posted by in categories: electronics, energy, quantum physics

Connecting the dots: Playing ‘LEGO’ at the atomic scale to build atomically coherent quantum dot solids (credit: Kevin Whitham, Cornell University)

Just as the single-crystal silicon wafer forever changed the nature of communication 60 years ago, Cornell researchers hope their work with quantum dot solids — crystals made out of crystals — can help usher in a new era in electronics.

Continue reading “Quantum dot solids: a new era in electronics?” »

Feb 28, 2016

HKUST students should consider careers in quantum computing, expert says

Posted by in categories: computing, quantum physics, transportation

I have been encouraging my nephews to consider this as well.


After nearly three decades of searching for ways to build superfast computers that operate on the principles of quantum mechanics, the reality of a fully-fledged quantum computer is moving closer, says professor Andrew Yao Chi-chih, dean of the Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing.

“Quantum computing is no longer viewed as a fad, or a scientist’s pie in the sky,’’ Yao told an audience of students, faculty, and invited guests during his presentation at a Hong Kong University of Science and Technology (HKUST) 25th Anniversary Distinguished Speakers Series event on January 28. Yao also took the opportunity to explain his rationale for quantum computing to be recognised as a Great Science. “Great Science involves the intersection of different scientific disciplines to create new knowledge that allows the exploration of the previously unimaginable,’’ stressed Yao, adding that Great Science also lifts the human spirit.

Continue reading “HKUST students should consider careers in quantum computing, expert says” »

Feb 27, 2016

How CPCG Embeds Hard Problems into a Quantum Annealing Computer

Posted by in categories: computing, quantum physics

https://www.youtube.com/watch?v=lNlCyD_WOps&sns=em

Improving problem solving on Quantum.


1QBit has identified a new faster and more scalable method of embedding problems into a quantum annealing processor. Here’s how the Cartesian product of complete graphs, or CPCG, embedding method works to harnesses the power of quantum computing.

Read more

Feb 27, 2016

Are Quantum Dots the Silicon Wafers of the Future?

Posted by in categories: electronics, quantum physics

I cannot wait until Q-Dot technology is commercially available to industries. When we start releasing Q-Dots to the commercial sector we’re going to see some real magic happen and possibly even able to improve many things that are refined, or created today. https://lnkd.in/bF4xm73


Silicon wafers have long been the go-to for all things electronic. First appearing in the ‘50s, they quickly made it as THE connectors, basically singlehandedly kickstarting the silicon revolution. A team of researchers from the Cornell University have discovered something they consider to be the next big step in quantum electronics. They are quite certain of the answer to the question “Are Quantum Dots the Silicon Wafers of the Future?”.

Read more

Feb 25, 2016

Is this the future of work? Scientists predict which jobs will still be open to humans in 2035

Posted by in categories: computing, employment, government, quantum physics, robotics/AI, security, space, virtual reality

1st; we all know in 30 years anything can change, wars can be fought & lost, natural disasters can occur, etc. However, posting for everyone’s amusement. 30 years ago which would be 1986; no one thought USSR would be broken up, 9/11 would happen creating the US Homeland Security, Lybia & Eygpt would overthrow their own leaders, that US Space missions would be outside the US Government, hacking at the levels we have today creating the CISO roles, of VR technology would exist, DNA and CRISPR would be discovered, etc.

So, who really knows what jobs will be fully automated v. not in 30 years or even created as a result of Quantum technology (Computing, Networking, Q-Dots for numerous thing that are not only technology, etc.). Just a fun article to share with everyone.


CSIRO says the Australian workplace of the future will be increasingly digitally-focused and automated, with titles such as online chaperone.

Continue reading “Is this the future of work? Scientists predict which jobs will still be open to humans in 2035” »

Feb 25, 2016

Quantum experiments designed by machines

Posted by in categories: computing, information science, quantum physics

Very nice.


Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. The research has just been published in the journal Physical Review Letters. The idea was developed when the physicists wanted to create new quantum states in the laboratory, but were unable to conceive of methods to do so. “After many unsuccessful attempts to come up with an experimental implementation, we came to the conclusion that our intuition about these phenomena seems to be wrong. We realized that in the end we were just trying random arrangements of quantum building blocks. And that is what a computer can do as well — but thousands of times faster”, explains Mario Krenn, PhD student in Anton Zeilinger’s group and first author research.

After a few hours of calculation, their algorithm — which they call Melvin — found the recipe to the question they were unable to solve, and its structure surprised them. Zeilinger says: “Suppose I want build an experiment realizing a specific quantum state I am interested in. Then humans intuitively consider setups reflecting the symmetries of the state. Yet Melvin found out that the most simple realization can be asymmetric and therefore counterintuitive. A human would probably never come up with that solution.”

Continue reading “Quantum experiments designed by machines” »

Feb 25, 2016

Defence white paper faces the reality of Australia’s engagement with Asia and the Pacific

Posted by in categories: computing, quantum physics, security

Australia’s improved alliance with China on defense, and Quantum Computing. Australia has been one of the early R&D groups working on Quantum Computing just like D-Wave, Stanford, UC Berkley, etc. So, this could help China drastically migrate much sooner to a Quantum infrastructure.


You think you’ve heard it before: Australia’s great security challenge this century is the dramatic shift in power to Asia epitomised by the rise of China.

But read of the latest Defence white paper if you want that abstract idea to sink in.

Continue reading “Defence white paper faces the reality of Australia’s engagement with Asia and the Pacific” »

Feb 25, 2016

NP-complete problem solved with biological motors

Posted by in categories: quantum physics, Ray Kurzweil, singularity

I am glad to see this article publish because it expresses well how technology and biological properties can be intertwined and advance collectively together. It will take this type of an approach to provide the foundation that is needed to enable the future visions that Kurzweil and others have shared around Singularity.

2 decades ago, Lucent experimented with the cells from fish to see how they could enable digital transmission through their experiments. They had some small successes; however, it never fully matured. Today, however, with Quantum we will finally see the advancements in technology, medicine, and science that many have only dreamed about or read from books or saw in movies.


Biological systems can explore every possible solution rapidly.

Continue reading “NP-complete problem solved with biological motors” »

Feb 25, 2016

Quantum Algorithms and Their Discontents

Posted by in categories: chemistry, computing, information science, life extension, materials, neuroscience, quantum physics, robotics/AI, security, space

Interesting read; however, the author has limited his view to Quantum being only a computing solution when in fact it is much more. Quantum technology does offer faster processing power & better security; but, Quantum offers us Q-Dots which enables us to enrich medicines & other treatments, improves raw materials including fuels, even vegetation.

For the first time we have a science that cuts across all areas of technology, medical & biology, chemistry, manufacturing, etc. No other science has been able to achieve this like Quantum.

Also, the author in statements around being years off has some truth if we’re suggesting 7 yrs then I agree. However, more than 7 years I don’t agree especially with the results we are seeing in Quantum Networking.

Continue reading “Quantum Algorithms and Their Discontents” »