Toggle light / dark theme

Error-transparent operations on a logical qubit protected by quantum error correction

Universal quantum computation1 is striking for its unprecedented capability in processing information, but its scalability is challenging in practice because of the inevitable environment noise. Although quantum error correction (QEC) techniques2,3,4,5,6,7,8 have been developed to protect stored quantum information from leading orders of error, the noise-resilient processing of the QEC-protected quantum information is highly demanded but remains elusive9. Here, we demonstrate phase gate operations on a logical qubit encoded in a bosonic oscillator in an error-transparent (ET) manner. Inspired by refs. 10,11, the ET gates are extended to the bosonic code and are able to tolerate errors on the logical qubit during gate operations, regardless of the random occurrence time of the error. With precisely designed gate Hamiltonians through photon-number-resolved a.c. Stark shifts, the ET condition is fulfilled experimentally. We verify that the ET gates outperform the non-ET gates with a substantial improvement of gate fidelity after an occurrence of the single-photon-loss error. Our ET gates in superconducting quantum circuits can be readily extended to multiple encoded qubits and a universal gate set is within reach, holding the potential for reliable quantum information processing.

“Quantum radar” uses entangled photons to detect objects

O,.,o.


The weird world of quantum physics is being harnessed for some fascinating use cases. In the latest example, physicists have developed and demonstrated a “quantum radar” prototype that uses the quantum entanglement phenomenon to detect objects, a system which could eventually outperform conventional radar in some circumstances.

Quantum entanglement describes the bizarre state where two particles can become linked so tightly that they seem to communicate instantly, no matter how far apart they are. Measuring the state of one particle will instantly change the state of the other, hypothetically even if it’s on the other side of the universe. That implies that the information is moving faster than the speed of light, which is thought to be impossible – and yet, it’s clearly and measurably happening. The phenomenon even unnerved Einstein himself, who famously described it as “spooky action at a distance.”

While we still don’t entirely understand why or how it works, that’s not stopping scientists figuring out ways to use it to our advantage. Strides are being made towards creating quantum computers and a quantum internet, both of which would be super fast and nigh-unhackable. And now, in a new study by physicists at the Institute of Science and Technology Austria (IST Austria), MIT and the University of York, the phenomenon been applied to radar.

New Recipe for Single-Atom Transistors May Enable Quantum Computers With Unparalleled Memory and Processing Power

Linking multiple copies of these devices may lay the foundation for quantum computing.

Once unimaginable, transistors consisting only of several- atom clusters or even single atoms promise to become the building blocks of a new generation of computers with unparalleled memory and processing power. But to realize the full potential of these tiny transistors — miniature electrical on-off switches — researchers must find a way to make many copies of these notoriously difficult-to-fabricate components.

Now, researchers at the National Institute of Standards and Technology (NIST) and their colleagues at the University of Maryland have developed a step-by-step recipe to produce the atomic-scale devices. Using these instructions, the NIST-led team has become only the second in the world to construct a single-atom transistor and the first to fabricate a series of single electron transistors with atom-scale control over the devices’ geometry.

Live Nuke Still Missing In American Swamp

Quantum radar can find them.


The United States military takes extreme caution and protocol when transporting nuclear weapons, but that doesn’t mean accidents haven’t happened in the past. And a nuclear accident sounds like the worst accident of all time. Watch today’s new video where we dive into the mistakes of the military and uncover a story about a live nuke, still lost in an American swamp!

Check out my new channel I Am: https://www.youtube.com/channel/UCH5YmeRhiQZt9_5Eky3A2og

🔔 SUBSCRIBE TO THE INFOGRAPHICS SHOW ►

🔖 MY SOCIAL PAGES

How Decoherence Splits The Quantum Multiverse

Education Saturday with Space Time.


Why is it that we can see these multiple histories play out on the quantum scale, and why do lose sight of them on our macroscopic scale? Many physicists believe that the answer lies in a process known as quantum decoherence.

Does conscious observation of a quantum system cause thefunction to collapse? The upshot is that more and more physicists think that consciousness – and even measurement – doesn’t directly causefunction collapse. In fact probably there IS no clear Heisenberg cut. The collapse itself may be an illusion, and the alternate histories that thefunction represents may continue forever. The question then becomes: why is it that we can see these multiple histories play out on the quantum scale, and why do lose sight of them on our macroscopic scale? Many physicists believe that the answer lies in a process known as quantum decoherence.

Quantum Computing in Python

In this article I will introduce the basic linear algebra you will need to understand quantum computing. We will only use NumPy in this article, and you’ll get an intro at the end to some interactive Jupyter notebooks, so you don’t need to download anything or learn terminal to get started. All you need is a web browser. If you want you can download the notebooks and run them locally.

Successfully measuring infinitesimal change in mass of individual atoms for the first time

A new door to the quantum world has been opened: When an atom absorbs or releases energy via the quantum leap of an electron, it becomes heavier or lighter. This can be explained by Einstein’s theory of relativity (E = mc2). However, the effect is minuscule for a single atom. Nevertheless, the team of Klaus Blaum and Sergey Eliseev at the Max Planck Institute for Nuclear Physics has successfully measured this infinitesimal change in the mass of individual atoms for the first time. In order to achieve this, they used the ultra-precise Pentatrap atomic balance at the Institute in Heidelberg. The team discovered a previously unobserved quantum state in rhenium, which could be interesting for future atomic clocks. Above all, this extremely sensitive atomic balance enables a better understanding of the complex quantum world of heavy atoms.

Astonishing, but true: If you wind a mechanical watch, it becomes heavier. The same thing happens when you charge your smartphone. This can be explained by the equivalence of energy (E) and mass (m), which Einstein expressed in the most famous formula in physics: E = mc2 (c: speed of light in vacuum). However, this effect is so small that it completely eludes our everyday experience. A conventional balance would not be able to detect it.

But at the Max Planck Institute for Nuclear Physics in Heidelberg, there is a balance that can: Pentatrap. It can measure the minuscule change in mass of a single atom when an electron absorbs or releases energy via a quantum jump, thus opening a for precision physics. Such quantum jumps in the electron shells of atoms shape our world—whether in life-giving photosynthesis and general chemical reactions or in the creation of colour and our vision.

/* */