БЛОГ

Archive for the ‘quantum physics’ category: Page 835

Sep 23, 2015

Scientists shatter distance record for teleporting quantum data

Posted by in categories: computing, encryption, internet, quantum physics

Quantum teleportation, the act of reconstructing quantum data somewhere else, is impressive just by itself. However, scientists at the US’ National Institute of Standards and Technology have managed to one-up that feat. They’ve broken the distance record for quantum teleportation by transferring the information from one photon to another across 63 miles of optical fiber. That may not sound like much, but it’s an achievement just to beam that data in the first place — 99 percent of photons would never make the complete trip. It was only possible thanks to newer detectors that could pick up the faint signal of the lone light particle.

You’d clearly need to send much more information before this teleportation becomes practical, but the achievement does open the door to many possibilities in quantum computing. You could use unbreakable quantum encryption at inter-city distances, for instance. The biggest challenge may simply be to extend the range to the point where quantum data transfers work on the scale of the internet, where there are occasionally thousands of miles between connections.

[Image credit: Getty Images/iStockphoto].

Read more

Sep 22, 2015

Physicists Discovered New State of Matter

Posted by in categories: materials, particle physics, quantum physics

I remember the time when states of matter were pretty simple: Solid, liquid and gas. Then came plasma state, supercritical fluid, Bose –Einstein condensate and more. Now this list of states of matter has grown by one more, with the surprising discovery of a new state dubbed “dropletons” that shows some similarity to liquids but occur under very unlike circumstances.

The discovery of new state of matter occurred when a team of scientists at the University of Colorado Joint Institute for Lab Astrophysics were concentrating laser light on gallium arsenide (GaAs) to generate excitons.

Excitons are made when a photon strikes a material, mostly a semiconductor. If an electron is knocked loose, or excited, it leaves what is labelled as “electron hole” behind. If the forces of other charges at very close distance keep the electron close enough to the hole in order to feel an attraction, a certain state forms called as an Exciton. Excitons are also called quasiparticles because the holes and electrons act together as if they were like a single particle.

Read more

Sep 22, 2015

Shades of ‘Star Trek’? Quantum Teleportation Sets Distance Record

Posted by in categories: encryption, internet, quantum physics

You’ve gotta love Star Trek, but there is absolutely NO WAY I’d ever set foot in a real teleportation device! (if one ever really got made, of course) Call me crazy, but I’m kinda partial to keeping my molecular cohesion as intact as possible, which kinda rules out having it ripped apart and remade on the other side.


A record-breaking distance has been achieved in the bizarre world of quantum teleportation, scientists say.

The scientists teleported photons (packets of light) across a spool of fiber optics 63 miles (102 kilometers) long, four times farther than the previous record. This research could one day lead to a “quantum Internet” that offers next-generation encryption, the scientists said.

Continue reading “Shades of ‘Star Trek’? Quantum Teleportation Sets Distance Record” »

Sep 22, 2015

Your Brain Isn’t a Computer. It’s a Quantum Field.

Posted by in categories: computing, neuroscience, quantum physics

For centuries, religious texts have explored the idea that reality breaks down once we get past our surface perceptions of it; and yet, it is through these ambiguities that we understand more about ourselves and our world. In the Old Testament, the embattled Job pleads with God for an explanation as to why he has endured so much suffering. God then quizzically replies, “Where were you when I laid the foundations of the earth?” (Job 38:4). The question seems nonsensical — why would God ask a person in his creation where he was when God himself created the world? But this paradox is little different from the one in Einstein’s famous challenge to Heisenberg’s “Uncertainty Principle”: “God does not play dice with the universe.” As Stephen Hawking counters, “Even God is bound by the uncertainty principle” because if all outcomes were deterministic then God would not be God. His being the universe’s “inveterate gambler” is the unpredictable certainty that creates him.

The mind then, according to quantum cognition, “gambles” with our “uncertain” reason, feelings, and biases to produce competing thoughts, ideas, and opinions. Then we synthesize those competing options to relate to our relatively “certain” realities. By examining our minds at a quantum level, we change them, and by changing them, we change the reality that shapes them.

Read more

Sep 20, 2015

The dimensional aspect of existence is associated with the dimensions of space and time.

Posted by in categories: cosmology, evolution, information science, materials, neuroscience, particle physics, quantum physics, singularity, space

The dimensionless aspect, since it has no dimensions, is outside of space and time. This is the key aspect to existence: an aspect outside of space and time perpetually interacting dialectically with an aspect inside space and time. All of the weird and wonderful phenomena of the universe are the products of this ultimate dichotomy.

http://youtu.be/MbRda_sCgkQ

Does this sound crazy? Then consider the evidence provided by black holes.

The R = 0 Universe.

Continue reading “The dimensional aspect of existence is associated with the dimensions of space and time.” »

Sep 17, 2015

Single photon decision-maker solves multi-armed bandit problem

Posted by in categories: computing, information science, particle physics, quantum physics

https://en.wikipedia.org/wiki/Multi-armed_bandit

In probability theory, the multi-armed bandit problem (sometimes called the K- or N-armed bandit problem) is a problem in which a gambler at a row of slot machines (sometimes known as “one-armed bandits”) has to decide which machines to play, how many times to play each machine and in which order to play them. When played, each machine provides a random reward from a distribution specific to that machine. The objective of the gambler is to maximize the sum of rewards earned through a sequence of lever pulls.


(Phys.org)—A combined team of researchers from France and Japan has created a decision-making device that is based on basic properties of quantum mechanics. In their paper published in Scientific Reports (and uploaded to the arXiv preprint server), the team describes the idea behind their device and how it works.

Continue reading “Single photon decision-maker solves multi-armed bandit problem” »

Sep 16, 2015

Schrödinger’s microbe: physicists plan to put living organism in two places at once

Posted by in category: quantum physics

A radical demonstration of quantum theory could see a bacterium suspended in an uncertain state similar to that famously endured by Schrödinger’s cat.

Read more

Sep 16, 2015

New quantum dot could make quantum communications possible

Posted by in categories: encryption, quantum physics

Real world quantum encryption and communication may just have gotten a whole lot closer, with a new super-accurate quantum dot.

Read more

Sep 15, 2015

Is Quantum Space-Time a Scale-Free Network Like Facebook?

Posted by in categories: neuroscience, quantum physics, space

Researchers from Queen Mary University of London and Karlsruhe Institute of Technology have developed a model that applies ideas from the theory of complex networks, such as the brain or the Internet, to the fundamental quantum geometry of space-time.

The research is published in Scientific Reports with the title “Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free.” The research paper is freely available online.

“We hope that by applying our understanding of complex networks to one of the fundamental questions in physics we might be able to help explain how discrete quantum spaces emerge,” said author Ginestra Bianconi.

Read more

Sep 14, 2015

First ever “photo” of light as particle and a wave

Posted by in categories: particle physics, quantum physics

One of the most confounding implications of quantum physics is that light can behave as both a particle (photon) and a wave, depending on the nature of the observation. This is called wave-particle duality, and it has been extremely difficult to picture, let alone observe in both stages simultaneously. Now, physicists publishing in Nature Communications report that they have been able to capture a photograph of wave/particle duality ‘in action’, so to speak. This TED video explains the nature of the effect:

Read more