Toggle light / dark theme

Quantum sensing via matter-wave interferometry aboard the ISS could broaden our knowledge of the universe

Future space missions could use quantum technologies to help us understand the physical laws that govern the universe, explore the composition of other planets and their moons, gain insights into unexplained cosmological phenomena, or monitor ice sheet thickness and the amount of water in underground aquifers on Earth.

NASA’s Cold Atom Lab (CAL), a first-of-its-kind facility aboard the International Space Station, has performed a series of trailblazing experiments based on the quantum properties of ultracold atoms. The tool used to perform these experiments is called an , and it can precisely measure gravity, magnetic fields, and other forces.

Atom interferometers are currently being used on Earth to study the fundamental nature of gravity and are also being developed to aid aircraft and ship navigation, but use of an atom interferometer in space will enable innovative science capabilities.

Physicists use machine learning to find out how layered gases and metals melt

In physics, a phase transition is a transformation of a substance from one form to another. They happen everywhere, from beneath the Earth’s crust to the cores of distant stars, but the classic example is water transitioning from liquid to gas by boiling.

Things get much more complex when physicists zoom in on the minuscule quantum realm or work with exotic matter. Understanding phase transitions rewards both increased knowledge of fundamental physics and future technological applications.

Now researchers have found out how thin layers of noble gases like helium and metals like aluminum melt in confined spaces by topological excitations. In the study, the layers were confined between two graphene sheets at high pressures.

Breakthrough Gravity Explanation Is a Step Closer to ‘Theory of Everything’

A new way of explaining gravity could bring us a step closer to resolving the heretofore irresolvable differences it has with quantum mechanics.

Physicists Mikko Partanen and Jukka Tulkki at Aalto University in Finland have devised a new way of thinking about gravity that they say is compatible with the Standard Model of particle physics, the theory describing the other three fundamental forces in the Universe – strong, weak, and electromagnetic.

It’s not quite a theory of quantum gravity… but it could help us get there.

Single-photon technology powers 11-mile quantum communications network between two campuses

Researchers at the University of Rochester and Rochester Institute of Technology recently connected their campuses with an experimental quantum communications network using two optical fibers. In a new paper published in Optica Quantum, scientists describe the Rochester Quantum Network (RoQNET), which uses single photons to transmit information about 11 miles along fiber-optic lines at room temperature using optical wavelengths.

Quantum communications networks have the potential to massively improve the security with which information is transmitted, making messages impossible to clone or intercept without detection. Quantum communication works with , or qubits, that can be physically created using atoms, superconductors, and even in defects in materials like diamond. However, photons—individual particles of light—are the best type of qubit for long distance quantum communications.

Photons are appealing for in part because they could theoretically be transmitted over existing fiber-optic telecommunications lines that already crisscross the globe. In the future, many types of qubits will likely be utilized because qubit sources, like or trapped ions, each have their own advantages for specific applications in or different types of quantum sensing.

Benchmarking quantum gates: New protocol paves the way for fault-tolerant computing

Researchers have developed a new protocol for benchmarking quantum gates, a critical step toward realizing the full potential of quantum computing and potentially accelerating progress toward fault-tolerant quantum computers.

The new protocol, called deterministic benchmarking (DB), provides a more detailed and efficient method for identifying specific types of quantum noise and errors compared to widely used existing techniques.

The work is published in the journal Chemical Reviews.

A Glimpse at the Quantum Behavior of a Uniform Gas

An innovative way to image atoms in cold gases could provide deeper insights into the atoms’ quantum correlations.

The macroscopic properties of objects that we encounter in everyday life are ultimately determined by the behavior of these objects’ microscopic constituents. For instance, the way that atoms move is key to understanding the pressure of the gas in our tires or the flow of our morning coffee into a cup. However, equally important is how the positions of these particles are correlated—how the particles “dance” together. This dance has already been imaged in highly confined systems in which particles can move only between discrete sites [1]. Now three separate experimental groups, one from École Normale Supérieure in Paris and two from MIT, have imaged the positions of individual atoms in a cold, uniform gas, exposing the atoms’ quantum correlations [24].

The fundamental quantum nature of particles leads to counterintuitive behavior in a collection of particles, even if there are no forces acting between them. Because quantum particles are indistinguishable, the probability of detecting one at a particular position is independent of which particle is observed. This feature implies that there are two classes of particle: bosons, which can change places without affecting the system’s quantum state; and fermions, which flip the sign of the state upon their exchange. The result is that photons and other bosons tend to bunch together, whereas electrons and other fermions tend to avoid each other.

/* */