Toggle light / dark theme

Breakthrough light-powered chip speeds up AI training and reduces energy consumption.

Engineers at Penn have developed the first programmable chip capable of training nonlinear neural networks using light—a major breakthrough that could significantly accelerate AI training, lower energy consumption, and potentially lead to fully light-powered computing systems.

Unlike conventional AI chips that rely on electricity, this new chip is photonic, meaning it performs calculations using beams of light. Published in Nature Photonics.

Antimicrobial resistance (AMR) presents a serious challenge in today’s world. The use of antimicrobials (AMU) significantly contributes to the emergence and spread of resistant bacteria. Companion animals gain recognition as potential reservoirs and vectors for transmitting resistant microorganisms to both humans and other animals. The full extent of this transmission remains unclear, which is particularly concerning given the substantial and growing number of households with companion animals. This situation highlights critical knowledge gaps in our understanding of risk factors and transmission pathways for AMR transfer between companion animals and humans. Moreover, there’s a significant lack of information regarding AMU in everyday veterinary practices for companion animals. The exploration and development of alternative therapeutic approaches to antimicrobial treatments of companion animals also represents a research priority. To address these pressing issues, this Reprint aims to compile and disseminate crucial additional knowledge. It serves as a platform for relevant research studies and reviews, shedding light on the complex interplay between AMU, AMR, and the role of companion animals in this global health challenge. This Reprint is especially addressed to companion animal veterinary practitioners as well as all researchers working on the field of AMR in both animals and humans, from a One Health perspective.

Converting sunlight into electricity is the task of photovoltaic solar cells, but nearly half the light that reaches a flat silicon solar cell surface is lost to reflection. While traditional antireflective coatings help, they only work within a narrow range of light frequency and incidence angles. A new study may have overcome this limit.

As reported in Advanced Photonics Nexus, researchers have proposed a new type of antireflective coating using a single, ultrathin layer of polycrystalline silicon nanostructures (a.k.a. a metasurface). Achieving minimal reflection across certain wavelengths and angles, the metasurface was reportedly developed by combining forward and inverse design techniques, enhanced by (AI).

The result is a coating that sharply reduces reflection across a wide range of wavelengths and angles, setting a new benchmark for performance with minimal material complexity.

Al is advancing faster than ever, and World is building the infrastructure to ensure humanity stays at the center of it.

At this year’s event, held in San Francisco, Alex Blania and Sam Altman unveiled the next chapter in World’s mission:

To create proof of personhood at global scale, safeguard human identity in the age of Al, and expand access to a privacy-preserving financial ecosystem built for everyone.

- World’s US launch — Next-gen Orb and Orb Mini — World ID partnerships with Razer and Match — World App 4.0 — World Card with Visa — Path to full decentralization.


AI is advancing faster than ever, and World is building the infrastructure to ensure humanity stays at the center of it.