Toggle light / dark theme

Free Satellite WiFi


Elon Musk’s SpaceX wants to launch thousands of satellites into space with the aim of providing super-fast global internet coverage, according to a regulatory filing.

SpaceX – the company on a mission to colonize Mars – outlined plans to put 4,425 satellites into space in a Federal Communications Commission (FCC) filing from earlier this week.

That’s three times the 1,419 satellites that are currently in space, according to the Union of Concerned Scientists, a not-for-profit group made up of scientists across the world.

Read more

Once you get to mach 5+ hypersonic speed, then a scramjet works and it is by far the most efficient type of engine for hypersonic speeds. A scramjet needs some other form of propulsion to get it to Mach 5. As a result, scramjets have become something of a well-studied technology in search of a practical application.

To reach these hypersonic speeds, Michael Smart, professor of hypersonics at the University of Queensland in Brisbane plans to combine an uncrewed scramjet with conventional rockets. He believes his Spartan launch system could radically reduce the costs of blasting satellites into orbit.

“All conventional satellite launch systems use different stages,” says Smart. “There’ll be a first stage rocket that normally gets up to Mach 5 or 6, you’ll have a second scramjet stage that goes two thirds of the way to space and you’ll have a final upper stage that takes the satellite into orbit.”

Read more

Today, SpaceX filed with the FCC to obtain the rights to operate 4,400 satellites to offer internet services from orbit, a plan that was announced last year.

Elon Musk’s trust currently owns 54% of the outstanding stock of SpaceX and has voting control of 78% of the outstanding stock of SpaceX.

Google and Fidelity’s investment valued SpaceX at roughly $15 billion. Therefore, Elon’s shares of SpaceX are worth $8.1 billion.

Read more

China plans to launch its first e-commerce satellite in 2017, with the primary purpose of using satellite data in agriculture.

The plan was announced on Monday during an international aviation and aerospace forum in Zhuhai, Guangdong Province, by the China Academy of Launch Vehicle Technology, China Aerospace Museum and Juhuasuan, an arm of e-commerce giant Alibaba.

“In an era of space economy, the potential of a commercial space industry is immeasurable,” Han Qingping, president of the Chinarocket Co., Ltd, said at the forum.

Read more

PARIS — The European Union’s executive commission on Oct. 26 unveiled a new space strategy that promises public investment to stimulate the creation of space start-up companies.

The Brussels, Belgium-based commission, which acts on behalf of the 28 European Union members — still including Britain for a couple of years — is already the biggest single customer for Europe’s Arianespace launch-service provider and for Europe’s satellite manufacturers.

The EU plans to launch some 30 satellites in the coming decade for the Galileo navigation and Copernicus environment-monitoring programs, which are the major beneficiaries of the commission’s space budget of 12 billion euros ($13.5 billion) between 2014 and 2020.

Read more

Rubik’s-cube-sized CubeSats are a nifty, cheap way for scientists to put a research vessel into space, but they’re limited to orbiting where they’re launched – until now. Los Alamos researchers have created and tested a safe and innovative rocket motor concept that could soon see CubeSats zooming around space and even steering themselves back to Earth when they’re finished their mission.

Consisting of modules measuring 10 × 10 × 11.35 cm (3.9 × 3.9 × 4.5 in), these mini-satellites first launched in 2003, but are currently lacking in propulsion because they’re designed to hitch a ride into space with larger, more expensive space missions. They’re usually deployed along with routine pressurized cargo launches, usually into low orbits that limit the kinds of studies that CubeSats can perform.

This limitation is, of course, frustrating for space researchers. In fact, the National Academy of Science recently identified propulsion as one of the main areas of technology that needs to be developed for CubeSats.

Read more

The Global Positioning System (GPS) is a great navigation aid – unless you lose the signal while negotiating a complicated spaghetti junction. That’s bad enough for conventional cars, but for autonomous vehicles it could be catastrophic, so the University of California, Riverside’s Autonomous Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory under Zak Kassas is developing an alternative navigation system that uses secondary radio signals, such as from cell phone systems and Wi-Fi to either complement existing GPS-based systems or as a standalone alternative that is claimed to be highly reliable, consistent, and tamper-proof.

Today, there are two global satellite navigation systems in operation, the US GPS and the Russian GLONASS, with the European Galileo system set to become fully operational in the next few years, and plans for the Chinese Beidou system to extend globally by 2020. These have revolutionized navigation, surveying, and a dozen other fields, but GPS and related systems still leave much to be desired. By their nature, GPS signals are weak and positions need to be confirmed by several satellites, so built up areas or mountainous areas can make the system useless. In addition, GPS signals can be deliberately or accidentally jammed or spoofed due to insufficient encryption and other protections.

In military circles, various supplementary systems are employed with everything from submarines to foot soldiers also using Inertial Navigation System (INS) that emply accelerometers and compasses to calculate positions from the last good GPS fix, but these only work for a limited time before they start to drift.

Read more

Rocket Lab is dedicating itself to launching small satellites cheaply and efficiently — a capability the American company thinks the burgeoning private spaceflight industry desperately needs.

Small satellites, some no bigger than a lunch box, are revolutionizing how people gather data about the Earth, and they might be the future of global communications.

Rocket Lab’s business model is a bit like Henry Ford’s was when he started selling Model T’s: keep the machine simple, produce a lot of them and keep them affordable. Peter Beck, the company’s owner, told Space.com that he’d like to reach a point where Rocket Lab launches one of its custom-made, small-satellite rockets about once per week. And similar to Henry Ford (who didn’t even want to make different colors of the Model T), Beck said that until that basic goal is met, he has no plans to diversify the company’s services. [Satellite Quiz: How Well Do You Know What’s Orbiting Earth?].

Read more