Toggle light / dark theme

A Very High-Resolution Urban Green Space from the Fusion of Microsatellite, SAR, and MSI Images

Jakarta holds the distinction of being the largest capital city among ASEAN countries and ranks as the second-largest metropolitan area in the world, following Tokyo. Despite numerous studies examining the diverse urban land use and land cover patterns within the city, the recent state of urban green spaces has not been adequately assessed and mapped precisely. Most previous studies have primarily focused on urban built-up areas and manmade structures. In this research, the first-ever detailed map of Jakarta’s urban green spaces as of 2023 was generated, with a resolution of three meters. This study employed a combination of supervised classification and evaluated two machine learning algorithms to achieve the highest accuracy possible.

Center for Energy Systems Research

Welcome to the age of wireless electricity.

Nikola Tesla once envisioned a world where electricity could be transmitted wirelessly, eliminating the need for wires and revolutionizing energy distribution.

Over a century later, that dream is on the brink of becoming reality.

Companies worldwide, from America’s Wave Inc. to Japan’s Space Power Technologies and New Zealand’s Emrod, are pioneering wireless power transmission technologies. These innovations range from microwave and laser-based energy transfer to solar satellites that beam electricity from space. New Zealand is already testing Emrod’s wireless energy infrastructure, which could provide clean, sustainable power across difficult terrains. Meanwhile, advancements like wireless EV charging roads and underground charging systems are making the technology more practical than ever.

As promising as wireless electricity sounds, challenges remain—chief among them, public skepticism and efficiency concerns.

Despite this, major institutions like Caltech and Purdue University are pushing forward, with projects aimed at developing large-scale wireless power solutions. Whether through inductive charging for electric vehicles, space-based solar power, or rectenna-driven energy grids, the world is inching closer to Tesla’s vision. If successful, wireless electricity could revolutionize industries, eliminate the limitations of traditional power grids, and usher in a new era of energy sustainability.

The future of power might just be as simple as turning on a switch—without plugging in.

Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery

Satellite-based optical remote sensing from missions such as ESA’s Sentinel-2 (S2) have emerged as valuable tools for continuously monitoring the Earth’s surface, thus making them particularly useful for quantifying key cropland traits in the context of sustainable agriculture [1]. Upcoming operational imaging spectroscopy satellite missions will have an improved capability to routinely acquire spectral data over vast cultivated regions, thereby providing an entire suite of products for agricultural system management [2]. The Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) [3] will complement the multispectral Copernicus S2 mission, thus providing enhanced services for sustainable agriculture [4, 5]. To use satellite spectral data for quantifying vegetation traits, it is crucial to mitigate the absorption and scattering effects caused by molecules and aerosols in the atmosphere from the measured satellite data. This data processing step, known as atmospheric correction, converts top-of-atmosphere (TOA) radiance data into bottom-of-atmosphere (BOA) reflectance, and it is one of the most challenging satellite data processing steps e.g., [6, 7, 8]. Atmospheric correction relies on the inversion of an atmospheric radiative transfer model (RTM) leading to the obtaining of surface reflectance, typically through the interpolation of large precomputed lookup tables (LUTs) [9, 10]. The LUT interpolation errors, the intrinsic uncertainties from the atmospheric RTMs, and the ill posedness of the inversion of atmospheric characteristics generate uncertainties in atmospheric correction [11]. Also, usually topographic, adjacency, and bidirectional surface reflectance corrections are applied sequentially in processing chains, which can potentially accumulate errors in the BOA reflectance data [6]. Thus, despite its importance, the inversion of surface reflectance data unavoidably introduces uncertainties that can affect downstream analyses and impact the accuracy and reliability of subsequent products and algorithms, such as vegetation trait retrieval [12]. To put it another way, owing to the critical role of atmospheric correction in remote sensing, the accuracy of vegetation trait retrievals is prone to uncertainty when atmospheric correction is not properly performed [13].

Although advanced atmospheric correction schemes became an integral part of the operational processing of satellite missions e.g., [9,14,15], standardised exhaustive atmospheric correction schemes in drone, airborne, or scientific satellite missions remain less prevalent e.g., [16,17]. The complexity of atmospheric correction further increases when moving from multispectral to hyperspectral data, where rigorous atmospheric correction needs to be applied to hundreds of narrow contiguous spectral bands e.g., [6,8,18]. For this reason, and to bypass these challenges, several studies have instead proposed to infer vegetation traits directly from radiance data at the top of the atmosphere [12,19,20,21,22,23,24,25,26].

NASA and Firefly Blue Ghost Mission 1 Lunar Landing Updates and live vie from ISS #iss

All 10 NASA payloads remain healthy as Blue Ghost approaches it’s final destination and continues to support science operations along the way! The LuGRE payload for example — developed in partnership by.
NASA Goddard and ASI_spazio — acquired and tracked Global Navigation Satellite System signals for the first time in lunar orbit – a new record! #BGM1

After a successful Trans Lunar Injection burn on Saturday, Feb. 8, Firefly’s spacecraft carrying NASA science and tech to the Moon has departed Earth’s orbit and begun its four-day transit to the Moon’s orbit. Blue Ghost will then spend approximately 16 days in lunar orbit before beginning its descent operations. Since launching more than three weeks ago, Blue Ghost has performed dozens of health tests generating 13 gigabytes of data. All 10 NASA payloads onboard are currently healthy and ready for surface operations on the Moon.

NASA’s Radiation Tolerant Computer (RadPC), developed by Montana State University, successfully operated while passing through the Earth’s Van Allen radiation belts, providing insight on how to mitigate the effects of radiation on computers. This helps improve our understanding of the radiation environment that future astronauts may experience on Artemis missions.

During an on-orbit health check, NASA’s LMS, developed by the Southwest Research Institute, accurately detected a change in magnetic fields. This is a positive sign that LMS will be able to measure the Moon’s magnetic and electrical fields, shedding light on the Moon’s interior temperature and composition on the lunar surface.

Also during a health check, Firefly and NASA teams captured data and an interior image of the sample container a from NASA’s Lunar PlanetVac (LPV), indicating the payload is operational in advance of surface operations on the Moon. The LPV payload is a technology demonstration that is designed to efficiently collect and transfer lunar soil from the surface to other science instruments or sample return containers without reliance on gravity.

With a suite of NASA science and technology on board, Firefly Aerospace is targeting no earlier than 3:45 a.m. EST on Sunday, March 2, to land the Blue Ghost lunar lander on the Moon. Blue Ghost is s-lated to touch down near Mare Crisium, a plain in the northeast quadrant on the near side of the Moon, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.

Starship’s Next Leap: SpaceX Gears Up for Epic Test Flight Amid High Stakes

SpaceX’s Starship is poised for its eighth flight from Boca Chica, Texas, pending regulatory approval from the FAA. The previous flight resulted in a mid-air explosion, leading to increased scrutiny and a temporary suspension by the FAA. The upcoming launch will feature a daring maneuver to catch the booster stage with “chopstick” arms, showcasing advanced engineering feats. The mission aims to deploy Starlink simulators, marking progress toward new satellite technology. Elon Musk and SpaceX view Starship as crucial for future missions to Mars and the Moon, with NASA keenly following its progress.

Space Development Agency satellite procurements moving forward amid heightened scrutiny

“Acquisitions and programs are moving forward,” an SDA spokesperson said in a statement to SpaceNews, adding that the agency is preparing to release a fresh solicitation for the 10 satellites in the near future.

Tranche 3 Tracking Layer proposals

In parallel with efforts to correct procurement missteps, SDA is advancing the first major satellite acquisition since Tournear’s removal: a 54-satellite procurement for the Tranche 3 Tracking Layer of the Proliferated Warfighter Space Architecture (PWSA). This next-generation missile tracking constellation builds on the foundation of earlier tranches, expanding coverage and improving real-time threat detection capabilities.

NASA satellites catch Earth’s magnetic field making music

And understanding these waves a little better could help scientists better predict when and where they’ll happen, as well as how strong they’ll be. That could be vital to the safety of satellites orbiting our planet, which are vulnerable to solar storms and other sudden bursts of radiation from deep space.

“These high-energy electrons are known as ‘killer electrons’ because they have damaged several satellites, costing hundreds of millions of dollars,” wrote Horne. “Chorus waves are now included in forecasting models that are designed to protect these satellites.”

Redwire lands new satellite contract for Space Force in-orbit refueling experiment

WASHINGTON — Space infrastructure company Redwire has secured a contract to provide an additional satellite platform for a U.S. Space Force orbital refueling experiment.

The satellite order, announced Feb. 11, is for a third Mako satellite bus for the Space Force’s Tetra-6 in-orbit refueling experiment scheduled for 2027. The prime contractor for the experiment, Arcfield, had previously ordered two Mako platforms for the Tetra-5 experiment, scheduled for 2025.

The Tetra-5 and Tetra-6 missions represent key tests of in-space refueling capabilities, a sector of the market closely being watched by military and commercial stakeholders as they seek to extend satellite lifespans.

Research sheds light on using multiple CubeSats for in-space servicing and repair missions

As more satellites, telescopes, and other spacecraft are built to be repairable, it will take reliable trajectories for service spacecraft to reach them safely. Researchers in the Department of Aerospace Engineering in The Grainger College of Engineering, University of Illinois Urbana-Champaign are developing a methodology that will allow multiple CubeSats to act as servicing agents to assemble or repair a space telescope.

Published in The Journal of the Astronautical Sciences, their method minimizes , guarantees that servicing agents never come closer to each other than 5 meters, and can be used to solve pathway guidance problems that aren’t space related.

“We developed a scheme that allows the CubeSats to operate efficiently without colliding,” said aerospace Ph.D. student Ruthvik Bommena. “These small spacecraft have limited onboard computation capabilities, so these trajectories are precomputed by mission design engineers.”

NASA picks SpaceX to launch Pandora exoplanet mission

Pandora will lift off atop a Falcon 9 rocket no earlier than this fall, according to NASA officials.

Pandora will head to low Earth orbit. Once there, the satellite will observe at least 20 known transiting exoplanets — worlds that cross the face of their parent star from the telescope’s perspective. It will observe these planets 10 separate times, staring at them for 24 hours on each occasion.