БЛОГ

Archive for the ‘solar power’ category: Page 101

Sep 13, 2019

Toyota Is Trying to Figure Out How to Make a Car Run Forever

Posted by in categories: solar power, sustainability, transportation

Put together the best solar panels money can buy, super-efficient batteries and decades of car-making know-how and, theoretically, a vehicle might run forever.

That’s the audacious motivation behind a project by Toyota Motor Corp., Sharp Corp. and New Energy and Industrial Technology Development Organization of Japan, or NEDO, to test a Prius that could revolutionize transportation.

Sep 10, 2019

Future of portable electronics: Novel organic semiconductor with exciting properties

Posted by in categories: computing, solar power, sustainability

Semiconductors are substances that have a conductivity between that of conductors and insulators. Due to their unique properties of conducting current only in specific conditions, they can be controlled or modified to suit our needs. Nowhere is the application of semiconductors more extensive or important than in electrical and electronic devices, such as diodes, transistors, solar cells, and integrated circuits.

Semiconductors can be made of either organic (carbon-based) or inorganic materials. Recent trends in research show that scientists are opting to develop more organic semiconductors, as they have some clear advantages over inorganic semiconductors. Now, scientists, led by Prof Makoto Tadokoro of the Tokyo University of Science, report on the synthesis of a novel organic substance with potential applications as an n-type semiconductor. This study is published in the journal Organic and Biomolecular Chemistry. According to Prof Makoto Tadokoro, “organic semiconductor devices, unlike hard inorganic semiconductor devices, are very soft and are useful for creating adhesive portable devices that can easily fit on a person.” However, despite the advantages of organic semiconductors, there are very few known stable molecules that bear the physical properties of n-type semiconductors, compared to inorganic n-type semiconductors.

N-heteroheptacenequinone is a well-known potential candidate for materials. However, it has some drawbacks: it is unstable in air and UV-visible light, and it is insoluble in organic solvents. These disadvantages obstruct the practical applications of this substance as a semiconductor.

Aug 25, 2019

SwRI and GE design and operate the highest temperature sCO2 turbine in the world

Posted by in categories: finance, military, solar power, sustainability

SAN ANTONIO — April 8, 2019 — A team of Southwest Research Institute and General Electric (GE) engineers have designed, built and tested the highest temperature supercritical carbon dioxide (sCO2) turbine in the world. The turbine was developed with $6.8 million of funding from the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO), in addition to $3 million from commercial partners GE Research, Thar Energy, Electric Power Research Institute, Aramco Services Company and Navy Nuclear Laboratory. Additionally, the DOE’s Advanced Research Projects Agency — Energy (ARPA-E) Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program provided financial support and extended the test program to validate advanced thermal seals.


Copyright © 2019 by the American Association for the Advancement of Science (AAAS)

Aug 18, 2019

Solid State Cooling

Posted by in categories: computing, solar power, sustainability

US based Phononic’s thermoelectric technology is proving truly disruptive in the usually staid world of cooling technology.

When it comes to cooling technologies it’s fair to say that not a lot has changed in the past 100 years. Today, however, Phononic, a US company based in North Carolina, is using solid-state microchips to reinvent how devices are cooled.

“Over the past 50 years, semiconductors have totally transformed areas as diverse as data, communications, solar power and LED lighting,” says Alex Guichard, senior products marketing manager, Phononic. “Today, we’re using thermoelectric coolers to offer a radical alternative to traditional forms of cooling technology.”

Aug 14, 2019

(Nearly) Unlimited Water

Posted by in categories: singularity, solar power, sustainability

This is Part Three of a five-part series by Ramez Naam, Singularity University Adjunct Faculty, exploring the power of innovation to boost our access to energy, food, water, raw materials, and human population. All are based on his new book, The Infinite Resource: The Power of Ideas on a Finite Planet

In Part One and Two of this series I showed that we have access to a huge amount of potentially available energy and food on the earth, both stemming from the tremendous input of solar energy to the planet. We have very serious energy and food challenges, which cannot be dismissed. But the challenges are not in the form of a hard limit – they’re in the form of a race between innovation and consumption. Victory in this race is certainly not guaranteed. But the most important variable – how quickly we innovate – is one we can affect through our policies. That’s a topic we’ll return to at the end of this series.

Aug 14, 2019

Giant Batteries Supercharge Wind and Solar Plans

Posted by in categories: government, solar power, sustainability

A global wave of investment in high-capacity batteries is poised to transform the market for renewable energy in coming years, making it more practical and affordable to store wind and solar power and deploy it when needed.

Government-owned utilities and companies are buying batteries that can be larger than shipping containers. Some like…

To Read the Full Story.

Aug 13, 2019

Study: All major Chinese cities capable of generating solar power more cheaply than grid

Posted by in categories: government, solar power, sustainability

A team of researchers with the KTH Royal Institute of Technology, Mälardalen University and Tsinghua University has found that all of China’s major cities are now in a position to produce electricity from solar power more cheaply than can be had from the grid. In their paper published in the journal Nature Energy, the group describes how they estimated solar energy costs for all the major Chinese cities, and what they found when they compared them to costs associated with the grid.

In recent years, China has put a significant amount of effort into producing and installing solar technology to the extent that they are now the world’s biggest producer of , and also the world’s biggest installer of solar panels. Last year, installations in the country accounted for half of all installations worldwide. A lot of that growth has been stimulated by government subsidies, but the Chinese government has made it clear that it wants solar to fly on its own—subsidies are slowly being withdrawn. In this new effort, the researchers wanted to know if China was ready to fly on its own, at least in its major cities.

The researchers started by estimating solar energy system prices and in all of the major Chinese cities. They then compared what they found with prices from the grid. Next, they estimated solar electricity prices at the grid scale, and compared them to electricity generated strictly from coal. The calculations accounted for estimates of the lifetime of solar systems. They report that they found that all 344 of the major cities they studied were currently in a position to generate electricity at lower costs than the grid supply—without subsidies. They also found that 22 percent of those cities could also produce at a lesser cost than possible with coal.

Jul 29, 2019

Engineers develop chip that converts wasted heat to usable energy

Posted by in categories: computing, solar power, sustainability

Mechanical engineers have discovered a way to produce more electricity from heat than thought possible by creating a silicon chip, also known as a ‘device,’ that converts more thermal radiation into electricity. This could lead to devices such as laptop computers and cellphones with much longer battery life and solar panels that are much more efficient at converting radiant heat to energy.

Jul 21, 2019

Lunar bricks could keep Moon colonists warm and generate electricity

Posted by in categories: solar power, space, sustainability

Space engineers have long considered lunar soil as locally available material for building outposts on the Moon, and now ESA researchers are considering it as a means to store energy. The Discovery & Preparation study by the agency and Azimut Space aims to determine how the lunar regolith can soak up solar energy during the day, then use it to generate electricity during the 14-day night and protect equipment against freezing.

Jul 16, 2019

Device recycles waste heat into light to boost solar systems

Posted by in categories: solar power, sustainability

New technology could boost the efficiency of solar power systems by converting waste heat into light.

Page 101 of 146First9899100101102103104105Last