БЛОГ

Archive for the ‘solar power’ category: Page 104

May 19, 2019

This device could be a big boost for making solar power much cheaper

Posted by in categories: solar power, sustainability

By converting heat to focused beams of light, a new solar device could create cheap and continuous power.

Read more

May 10, 2019

Secrets of fluorescent microalgae could lead to super-efficient solar cells

Posted by in categories: solar power, sustainability

Tiny light-emitting microalgae, found in the ocean, could hold the secret to the next generation of organic solar cells, according to new research carried out at the Universities of Birmingham and Utrecht.

Microalgae are probably the oldest surviving living organisms on the planet. They have evolved over billions of years to possess light harvesting systems that are up to 95 per cent efficient. This enables them to survive in the most , and adapt to changes our world has seen over this time-span.

Unravelling how this system works could yield important clues about how it could be used or recreated for use in new, super-efficient organic solar panels. Because of the complexity of the organisms and the huge variety of different species, however, progress in this area has been limited.

Continue reading “Secrets of fluorescent microalgae could lead to super-efficient solar cells” »

May 6, 2019

Solar Power Stations In Space Could Supply The World With Limitless Energy

Posted by in categories: solar power, space, sustainability

Thankfully, it’s unlikely the solar array could be weaponized into an orbiting “death ray”.

Read more

Apr 30, 2019

Room Temperature Cold Fusion Scientifically Proven!

Posted by in categories: solar power, sustainability

Forget solar power, forget wind, forget any expensive and polluting way of generating energy! Cold fusion is here, people, and it has been scientifically proven to exist at room temperatures, in a simple experimental lab jar.

Read more

Apr 28, 2019

Solar Electric Propulsion (SEP)

Posted by in categories: robotics/AI, solar power, space travel

As NASA seeks cost-effective access to destinations across the inner solar system, including cislunar space and Mars, it also seeks to shorten the cycle of time to develop and infuse transformative technologies that increase the nation’s capabilities in space, enable NASA’s future missions and support a variety of commercial spaceflight activities.

NASA’s Solar Electric Propulsion (SEP) project is developing critical technologies to extend the length and capabilities of ambitious new science and exploration missions. Alternative propulsion technologies such as SEP may deliver the right mix of cost savings, safety and superior propulsive power to enrich a variety of next-generation journeys to worlds and destinations beyond Earth orbit.

Energized by the electric power from on-board solar arrays, the electrically propelled system will use 10 times less propellant than a comparable, conventional chemical propulsion system, such as those used to power the space shuttles to orbit. Yet that reduced fuel mass will deliver robust power capable of propelling robotic and crewed missions well beyond low-Earth orbit — sending exploration spacecraft to distant destinations or ferrying cargo to and from points of interest, laying the groundwork for new missions or resupplying those already underway. Mission needs for high-power SEP are driving the development of advanced technologies the project is developing and demonstrating including large, light-weight solar arrays, magnetically shielded ion propulsion thrusters, and high-voltage power processing units.

Read more

Apr 27, 2019

5 AI Breakthroughs We’ll Likely See in the Next 5 Years

Posted by in categories: climatology, robotics/AI, solar power, sustainability

Just as the modern computer transformed our relationship with bits and information, AI will redefine and revolutionize our relationship with molecules and materials. AI is currently being used to discover new materials for clean-tech innovations, such as solar panels, batteries, and devices that can now conduct artificial photosynthesis.

Today, it takes about 15 to 20 years to create a single new material, according to industry experts. But as AI design systems skyrocket in capacity, these will vastly accelerate the materials discovery process, allowing us to address pressing issues like climate change at record rates. Companies like Kebotix are already on their way to streamlining the creation of chemistries and materials at the click of a button.

Atomically precise manufacturing will enable us to produce the previously unimaginable.

Continue reading “5 AI Breakthroughs We’ll Likely See in the Next 5 Years” »

Apr 24, 2019

New type of silicon promises cheaper solar technology

Posted by in categories: solar power, sustainability

An international research team led by The Australian National University (ANU) has made a new type of silicon that better uses sunlight and promises to cut the cost of solar technology.

The researchers say their world-first invention could help reduce the costs of renewable electricity below that of existing coal power stations, as well as lead to more efficient solar cells.

Senior researcher ANU Professor Jodie Bradby said was used as the raw material for solar cells because of its abundance, low-cost and non-toxicity.

Continue reading “New type of silicon promises cheaper solar technology” »

Apr 23, 2019

Solar power now comes in the form of a flower

Posted by in categories: solar power, sustainability

Click on photo to start video.

Forget rooftop panels. This is the next generation of solar power.

Read more

Apr 16, 2019

Winters Are Only Going to Get Worse, So Researchers Invented a Way to Generate Electricity from Snowfall

Posted by in categories: solar power, sustainability

The farther you get from the equator, the less effective solar panels become at reliably generating power all year round. And it’s not just the shorter spans of sunlight during the winter months that are a problem; even a light dusting of snow can render solar panels ineffective. As a result of global warming, winters are only going to get more severe, but there’s at least one silver lining as researchers from UCLA have come up with a way to harness electricity from all that snow.

The technology they developed is called a snow-based triboelectric nanogenerator (or snow TENG, for short) which generates energy from the exchange of electrons. If you’ve ever received a nasty shock when touching a metal door handle, you’ve already experienced the science at work here. As it falls towards earth, snowflakes are positively charged and ready to give up electrons. In a way, it’s almost free energy ready for the taking, so after testing countless materials with an opposite charge, the UCLA researchers (working with collaborators from the University of Toronto, McMaster University, and the University of Connecticut) found that the negative charge of silicone made it most effective for harvesting electrons when it came into contact with snowflakes.

Read more

Apr 12, 2019

EGEB: Solar cell breakthrough, Hawaiian solar projects, Chicago renewables, Amazon, and more

Posted by in categories: climatology, education, solar power, sustainability

  • Researchers figure out a new way to pair perovskites with silicon for a solar boost.
  • Hawaiian Electric sets new goals for solar and storage.
  • Chicago officially commits to its 100% renewable energy goal for 2035.
  • Anaheim builds nine new solar projects at public schools.
  • Amazon employees want the company to take action on climate change, stop supporting fossil fuels.

Read more