Toggle light / dark theme

What if solar cells worked at night? That’s no joke, according to Jeremy Munday, professor in the Department of Electrical and Computer Engineering at UC Davis. In fact, a specially designed photovoltaic cell could generate up to 50 watts of power per square meter under ideal conditions at night, about a quarter of what a conventional solar panel can generate in daytime, according to a concept paper by Munday and graduate student Tristan Deppe. The article was published in, and featured on the cover of, the January 2020 issue of ACS Photonics.

Munday, who recently joined UC Davis from the University of Maryland, is developing prototypes of these nighttime solar cells that can generate small amounts of power. The researchers hope to improve the power output and efficiency of the devices.

Munday said that the process is similar to the way a normal solar cell works, but in reverse. An object that is hot compared to its surroundings will radiate heat as infrared light. A conventional solar cell is cool compared to the sun, so it absorbs light.

The X tractor is being presented in commemoration of Kubota’s 130th year in business.


According to agricultural machinery manufacturer Kubota, there are now fewer farmers in Japan, trying to manage increasingly large amounts of land. With that problem in mind, the company recently unveiled a concept for helping those farmers out – a driverless tractor.

Known as the X tractor (a play on “cross tractor”), the vehicle was designed as part of Kubota’s Agrirobo automated technology program. It made its public debut earlier this month, at an exhibition in the city of Kyoto.

Although not much in the way of technical details have been provided, the vehicle is claimed to be completely electrically-powered, via a combination of lithium-ion battery packs and solar panels.

University of California, Berkeley, scientists have created a blue light-emitting diode (LED) from a trendy new semiconductor material, halide perovskite, overcoming a major barrier to employing these cheap, easy-to-make materials in electronic devices.

In the process, however, the researchers discovered a fundamental property of perovskites that may prove a barrier to their widespread use as solar cells and transistors.

Alternatively, this unique property may open up a whole new world for perovskites far beyond that of today’s standard semiconductors.

Batteries are the key to decarboni z ing both transport and the grid, but today’s technology is still a long way from living up to this promise. IBM seems to have decided its computing chops are the key to solving the problem.

Lithium-ion batteries are still the gold standard technology in this field, and they’ve come a long way; 10 years ago they could just about get your iPod through the day, today they can power high-performance cars over hundreds of miles.

But if we want to reach a point w h ere batteries can outperform gasoline or store huge amounts of solar energy, we need some breakthroughs. So IBM has teamed up with Mercedes-Benz and its parent company Daimler to develop new batteries that could match up to our needs.

“A new model based on the blood-vessel network in a rat brain shows that the vessel position within its circulatory network does not influence the blood flow nor how nutrients are transported. Instead, transport is controlled mostly by the dilation of vessels. As well as providing new insights into the circulatory system, the model could lead to better artificial tissues and brain-scanning techniques – and might even improve the performance of solar panels.”

Nutrient flow in the brain is controlled by blood-vessel dilation, reveals network model

If you enjoyed this article, please like and follow our Facebook page for the latest news on neuroscience, psychology, and artificial intelligence:

https://www.facebook.com/The-Neuro-Network-383136302314720/


New understanding of blood transport could lead to better solar panels.

For the first time, the agency’s Transiting Exoplanet Survey Satellite (TESS) has discovered a roughly Earth- planet in the habitable zone of its host star, the zone of orbital distances where liquid water could be stable on a world’s surface.

NASA’s TESS Planet Hunter Finds Its 1st Earth-Size World in ‘Habitable Zone’ : Read more

Interesting, perhaps pushing the paradigm limits here. 86% of solar energy is similar to Precambrian earth during the Faint Young Sun, a snow ball earth. Part of the report that is a bit confusing to me is the comment “One of the other planets is a red dwarf about 40% as massive, 40% as wide and 50% as hot as Earth’s sun.” I think this is about the host star being a red dwarf star. Red dwarfs can be flaring stars and cause problems for *habitable* exoplanets. The Sun spins about 2 km/s at the its equator, red dwarf stars can spin faster like 4 km/s or faster, rotation periods 1 day to 10 days so red dwarfs can emit more flares. The report does comment “In 11 months of data, we saw no flares from the star, which improves the chances TOI 700 d is habitable and makes it easier to model its atmospheric and surface conditions,” discovery team leader Emily Gilbert, a graduate student at the University of Chicago, said in the same statement.

IBM found a way to make a battery with materials from seawater instead of cobalt or nickel which are harmful to the environment, and it charges much faster.


Lithium-ion batteries are just as important as solar panels and wind turbines in our pursuit of sustainable energy. The use of lithium-ion technology is sustainable, however, its materials are not. When the battery has served its purpose, if it’s not disposed of correctly, it has a profoundly negative impact on the planet. Furthermore, the making of the batteries involves sourcing of heavy metals that are expensive and come at a substantial humanitarian and environmental cost.

In search of a better option, IBM found a way to make a battery that relies on materials from seawater instead. Testing revealed that the new battery is just as good as the one made with heavy metals, such as cobalt and nickel.

In retaliation to the unethical practice of how heavy metals are attained, as well as the damage these metals cause when they leak out into the environment, companies like IBM have taken a considerable interest in developing alternatives that don’t require the use of heavy metals.

Might interest some.


Think of a train coming down the tracks to a switch point where it could go either to the right or the left—and it always goes to the right.

Photosynthetic organisms have a similar switch point. After sunlight is absorbed, energy transfers rapidly to a protein called the reaction center. From this point, the electrons could move either to an A-branch (or “right-track”) set of molecules, or to a B-branch (“left-track”) set of identical molecules.

New research from Washington University in St. Louis and Argonne National Laboratory coaxes electrons down the track that they typically don’t travel—advancing understanding of the earliest light-driven events of photosynthesis. The findings were published Dec. 31 in the Proceedings of the National Academy of Sciences (PNAS).