Toggle light / dark theme

New standard of reference for assessing solar forecast proposed

Being able to accurately forecast how much solar energy reaches the surface of the Earth is key to guiding decisions for running solar power plants.

While day-ahead forecasts have become more accurate in recent years, the solar community lacks a unified verification procedure, and assessing how one compares to another is difficult. New work in the Journal of Renewable and Sustainable Energy looks to provide a standard of reference to the field.

Researcher Dazhi Yang proposed an improved way to assess day-ahead solar forecasting. The proposed method combines two popular reference methods for weather forecasting, namely persistence and climatology. Using a weighted linear combination of both methods, his approach provides a new way to gauge the skill of a forecaster.

Solar and Wind Power So Cheap They’re Outgrowing Subsidies

(Bloomberg) — For years, wind and solar power were derided as boondoggles. They were too expensive, the argument went, to build without government handouts.

Today, renewable energy is so cheap that the handouts they once needed are disappearing.

On sun-drenched fields across Spain and Italy, developers are building solar farms without subsidies or tax-breaks, betting they can profit without them. In China, the government plans to stop financially supporting new wind farms. And in the U.S., developers are signing shorter sales contracts, opting to depend on competitive markets for revenue once the agreements expire.

A Solar-Powered Hyperloop Train Could Soon Be a Reality

Click here to read the full article.

The Hyperloop may still be a decade from becoming a reality, but already people are trying to improve upon the concept. Chinese architecture firm MAD is developing an eco-friendly version of the futuristic transportation system, one that would utilize solar and wind energies to operate.

Earlier this week, MAD announced that it was working with US-based Hyperloop Transportation Technologies on a new sustainable design with the aim of creating “enhanced connectivity between cities and people,” according to CNN. The proposed Hyperloop draws its power from a system of solar panels and wind turbine forests.

Toyota Wants to Slather Solar Panels All Over Its Prius Hybrid

Since July, Toyota has been working on a brand-new design. It features special, much higher efficiency solar panels that are mounted on the hood, roof and even hatchback of the car, charging the car’s batteries even when it’s moving.

Panel Van

The new solar system could allow the Prius to cover 50 kilometers, four days a week, on solar alone, Bloomberg reports.

Toyota Is Trying to Figure Out How to Make a Car Run Forever

Put together the best solar panels money can buy, super-efficient batteries and decades of car-making know-how and, theoretically, a vehicle might run forever.

That’s the audacious motivation behind a project by Toyota Motor Corp., Sharp Corp. and New Energy and Industrial Technology Development Organization of Japan, or NEDO, to test a Prius that could revolutionize transportation.

Future of portable electronics: Novel organic semiconductor with exciting properties

Semiconductors are substances that have a conductivity between that of conductors and insulators. Due to their unique properties of conducting current only in specific conditions, they can be controlled or modified to suit our needs. Nowhere is the application of semiconductors more extensive or important than in electrical and electronic devices, such as diodes, transistors, solar cells, and integrated circuits.

Semiconductors can be made of either organic (carbon-based) or inorganic materials. Recent trends in research show that scientists are opting to develop more organic semiconductors, as they have some clear advantages over inorganic semiconductors. Now, scientists, led by Prof Makoto Tadokoro of the Tokyo University of Science, report on the synthesis of a novel organic substance with potential applications as an n-type semiconductor. This study is published in the journal Organic and Biomolecular Chemistry. According to Prof Makoto Tadokoro, “organic semiconductor devices, unlike hard inorganic semiconductor devices, are very soft and are useful for creating adhesive portable devices that can easily fit on a person.” However, despite the advantages of organic semiconductors, there are very few known stable molecules that bear the physical properties of n-type semiconductors, compared to inorganic n-type semiconductors.

N-heteroheptacenequinone is a well-known potential candidate for materials. However, it has some drawbacks: it is unstable in air and UV-visible light, and it is insoluble in organic solvents. These disadvantages obstruct the practical applications of this substance as a semiconductor.

SwRI and GE design and operate the highest temperature sCO2 turbine in the world

SAN ANTONIO — April 8, 2019 — A team of Southwest Research Institute and General Electric (GE) engineers have designed, built and tested the highest temperature supercritical carbon dioxide (sCO2) turbine in the world. The turbine was developed with $6.8 million of funding from the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO), in addition to $3 million from commercial partners GE Research, Thar Energy, Electric Power Research Institute, Aramco Services Company and Navy Nuclear Laboratory. Additionally, the DOE’s Advanced Research Projects Agency — Energy (ARPA-E) Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program provided financial support and extended the test program to validate advanced thermal seals.


Copyright © 2019 by the American Association for the Advancement of Science (AAAS)

Solid State Cooling

US based Phononic’s thermoelectric technology is proving truly disruptive in the usually staid world of cooling technology.

When it comes to cooling technologies it’s fair to say that not a lot has changed in the past 100 years. Today, however, Phononic, a US company based in North Carolina, is using solid-state microchips to reinvent how devices are cooled.

“Over the past 50 years, semiconductors have totally transformed areas as diverse as data, communications, solar power and LED lighting,” says Alex Guichard, senior products marketing manager, Phononic. “Today, we’re using thermoelectric coolers to offer a radical alternative to traditional forms of cooling technology.”

(Nearly) Unlimited Water

This is Part Three of a five-part series by Ramez Naam, Singularity University Adjunct Faculty, exploring the power of innovation to boost our access to energy, food, water, raw materials, and human population. All are based on his new book, The Infinite Resource: The Power of Ideas on a Finite Planet

In Part One and Two of this series I showed that we have access to a huge amount of potentially available energy and food on the earth, both stemming from the tremendous input of solar energy to the planet. We have very serious energy and food challenges, which cannot be dismissed. But the challenges are not in the form of a hard limit – they’re in the form of a race between innovation and consumption. Victory in this race is certainly not guaranteed. But the most important variable – how quickly we innovate – is one we can affect through our policies. That’s a topic we’ll return to at the end of this series.

Giant Batteries Supercharge Wind and Solar Plans

A global wave of investment in high-capacity batteries is poised to transform the market for renewable energy in coming years, making it more practical and affordable to store wind and solar power and deploy it when needed.

Government-owned utilities and companies are buying batteries that can be larger than shipping containers. Some like…

To Read the Full Story.

/* */