Toggle light / dark theme

An international research team has fabricated a 1 cm2 perovskite-silicon tandem solar cell that utilizes a top cell based on a perovskite absorber integrating inorganic copper(I) thiocyanate (CuSCN).

A co-deposition strategy of CuSCN and perovskite is firstly developed to solve the key technical…


A Saudi-Chinese research team has fabricated a perovskite-silicon tandem solar cell without a hole transport layer (HTL) in the perovskite top cell. This innovative strategy, based on the co-deposition of copper(I) thiocyanate and perovskite in the top cell absorber, was intended at solving typical issues of HTLs in tandem devices.

British startup plans to supply solar power from space to Icelanders by 2030, in what could be the world’s first demonstration of this novel renewable energy source.

The space solar power project, announced on Monday (Oct. 21), is a partnership between U.K.-based Space Solar, Reykjavik Energy and Icelandic sustainability initiative Transition Labs.

This solar breakthrough just changed everything.
Thanks to Opera for sponsoring this video. Click here https://opr.as/Opera-browser-DrBenMiles to upgrade your browser for FREE!

Last month, Oxford PV’s breakthrough solar cell broke the efficiency world record and is the world’s first commercially available Perovskite solar panel.
How does it work? And what does this mean for the future of solar?

Thanks you so much to the team for allowing me behind the scenes into their development facility and for the free Halloween costume.

#solar #efficiency #breakthrough #physics #perovskite.

Chapters.
0:00 The Solar Power Breakthrough.
3:25 Humanity’s Journey to Capture the Sun.
8:46 How We Broke the Limit of Solar Efficiency.
13:15 Building the World’s First Perovskite Solar Panel.
17:23 The Future of Solar.

🚀 JOIN US for members-only content: https://www.patreon.com/DrBenMiles.

The efficiency and performance of photovoltaics (PVs) have improved significantly over the past decades, which has led to an increase in the adoption of solar technologies. To further enhance the performance of solar cells, energy researchers worldwide have been devising and testing alternative design strategies, leveraging different materials and cell structures.

Solar cells could be printed out like newspapers after Australia’s leading science organisation opened a $6.8 million facility dedicated to flexible solar technology.

The CSIRO launched its state-of-the-art Printed Photovoltaic Facility in south-east Melbourne on Wednesday, following more than 15 years of research into the renewable energy technology.

Researchers said printed, flexible photovoltaic cells could not only lower the cost of solar energy but could be used to deliver power in challenging areas such as space exploration, defence and disaster recovery.

While wind and solar energy are the two most viable clean alternatives to the dirty energy sources that power most of our society, the energy that can be harvested from ocean waves also has a lot of potential as an infinitely renewable source.

However, the technology is still developing, and a new research tool may play a big part in helping it get there, Interesting Engineering reported.

The new device, the marine and hydrokinetic toolkit, was developed jointly by the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories. It offers validation and standardized analysis tools to help researchers figure out whether their wave energy-gathering technologies are going to be viable without forcing them to undergo expensive and difficult real-world testing.

One of the UK’s largest solar farms, a 55 MW project, is now officially online, providing enough power for over 20,000 homes.

The solar farm, developed by Atrato Onsite Energy, is also the fourth largest in the entire country, marking a major milestone for renewable energy in the UK.

The solar farm, which cost £39.4 million to build, is located in Richmond, North Yorkshire, and it covers an impressive 166 acres – that’s about 93 football fields. With over 93,000 bifacial solar panels, this site is expected to reduce CO2 emissions by 11,000 tonnes annually.

The reason? While sunny regions naturally provide enough light to grow crops, areas with colder winters often need grow lights and greenhouses part of the year. This increases energy consumption, logistical headaches, and ultimately, food costs.

In their paper, Jiao and colleagues argue for a new method that could dramatically revamp farming practices to reduce land use and greenhouse gas emissions.

Dubbed “electro-agriculture,” the approach uses solar panels to trigger a chemical reaction that turns ambient CO2 into an energy source called acetate. Certain mushrooms, yeast, and algae already consume acetate as food. With a slight genetic tweak, we could also engineer other common foods such as grains, tomatoes, or lettuce to consume acetate.