Toggle light / dark theme

This New Hybrid Solar Cell Can Harvest Electricity From Actual Raindrops

As advanced and efficient as our solar panels are becoming, they’re still pretty much useless when rain clouds arrive overhead. That could soon change thanks to a hybrid cell that can harvest energy from both sunlight and raindrops.

The key part of the system is a triboelectric nanogenerator or TENG, a device which creates electric charge from the friction of two materials rubbing together, as with static electricity – it’s all about the shifting of electrons.

TENGs can draw power from car tyres hitting the road, clothing materials rubbing up against each other, or in this case the rolling motion of raindrops across a solar panel. The end result revealed by scientists from Soochow University in China is a cell that works come rain or shine.

Read more

Tiny Light-Activated Gold-Covered Nanowires Can Make Neurons Fire

Researchers at the University of Chicago have developed light-activated nanowires that can stimulate neurons to fire when they are exposed to light. The researchers hope that the nanowires could help in understanding complex brain circuitry, and they may also be useful in treating brain disorders.

Optogenetics, which involves genetically modifying neurons so that they are sensitive to a light stimulus, has attracted a lot of attention as a research tool and potential therapeutic approach. However, some researchers have misgivings about optogenetics, as it involves inserting a gene into cells, potentially opening the door to unforeseen effects and possibly permanently altering treated cells.

In an effort to develop an alternative, a research team at the University of Chicago has devised a new modality that can enable light activation of neurons without the need for genetic modification. Their technique involves nanowires that are so small that if they were laid side-by-side, hundreds of them would fit on the edge of a sheet of paper. Although initially designed for use in solar cells, their small size also makes them well suited to interacting with cells.

Read more

Caltech and Grumman partner on Space Based Solar Power Initiative

Space Solar Power Initiative (SSPI) is a multi-year research in the field of Space Solar Power Initiative conducted by Caltech team in collaboration with Northrop Grumman (NG) Aerospace and Mission Systems division.

SSPI approach: • Enabling technologies developed at Caltech • Ultra-light deployable space structures • High efficiency ultra-light photovoltaic (PV) • Phased Array and Power Transmission • Integration of concentrating PV, radiators, MW power conversion and antennas in single cell unit • Localized electronics and control for system robustness, electronic beam steering • Identical spacecraft flying in formation • Target is specific power over 2000 Watts per kilogram. This would cost competitive with ground-based power.

Read more

Gen-next smart solar windows could produce electricity

Washington: Scientists have discovered a new material for next-generation smart windows that not only darken automatically when the Sun is too bright but also convert solar energy into electricity.

Researchers at the Lawrence Berkeley National Laboratory (Berkeley Lab) in the US found a form of perovskite that works well as a stable and photoactive semiconductor material that can reversibly switch between transparent and non-transparent state, without degrading its electronic properties.

The scientists made the discovery while investigating the phase transition of the material, an inorganic perovskite.

Read more