Solar farms moving from the land to the water.
Large solar arrays on land take up land that can be used to grow food. Solar arrays over water provide significant advantages.
Currently floating on a lake in the Netherlands, the solar island comprises 180 movable solar panels that provide an increase in energy production by up to 40 percent.
A Portuguese company’s sustainable solution is following the Sun, almost like a stalker, in a bid to get the most out of its energy.
SOLARISFLOAT
SolarisFloat has developed an innovative floating solar solution that is unlike the many being installed in water bodies around the world. With single-or dual-axis tracking, the floating island is powered by electric engines that consume less than 0.5 percent of the total energy produced. As the BBC explained, the installation, named PROTEVS, is the first to merge floating solar panels with Sun-tracking technology.
Two-dimensional materials, which consist of just a single layer of atoms, can be packed together more densely than conventional materials, so they could be used to make transistors, solar cells, LEDs, and other devices that run faster and perform better.
One issue holding back these next-generation electronics is the heat they generate when in use. Conventional electronics typically reach about 80 degrees Celsius, but the materials in 2D devices are packed so densely in such a small area that the devices can become twice as hot. This temperature increase can damage the device.
This problem is compounded by the fact that scientists don’t have a good understanding of how 2D materials expand when temperatures rise. Because the materials are so thin and optically transparent, their thermal expansion coefficient (TEC)—the tendency for the material to expand when temperatures increase—is nearly impossible to measure using standard approaches.
Solar power could be gathered far away in space and transmitted wirelessly down to Earth to wherever it is needed. The European Space Agency (ESA) plans to investigate key technologies needed to make Space-Based Solar Power a working reality through its SOLARIS initiative. Recently in Germany, one of these technologies, wireless power transmission, was demonstrated to an audience of decision-makers from business and government.
The demonstration took place at Airbus’ X-Works Innovation Factory in Munich. Microwave beaming was used to transmit green energy between two points representing ‘Space’ and ‘Earth’ over a distance of 36 meters.
The received power was used to light up a model city and produce green hydrogen by splitting water. It even served to produce the world’s first wirelessly cooled 0% alcohol beer in a fridge before being served to the watching audience.
Researchers have developed a standalone device that converts sunlight, carbon dioxide, and water into a carbon-neutral fuel, without requiring any additional components or electricity.
The device, developed by a team from the University of Cambridge, is a significant step toward achieving artificial photosynthesis.
Photosynthesis is how plants and some microorganisms use sunlight to synthesize carbohydrates from carbon dioxide and water.
The community will offer eight different floor plans, ranging from three to four bedrooms and two to three bathrooms. Homes will be powered by rooftop solar panels, include a Ring Video Doorbell Pro, Schlage Encode Smart WiFi deadbolt, a Honeywell Home T6 Pro WiFi smart thermostat and a Wolf Ranch security package.
RELATED: The Georgetown gem that gleams rich with history: Southwestern University
Prices are expected to start from the mid-$400,000s.
It will be used to power oil and gas production.
Hywind Tampen, the world’s largest floating wind farm, located off the coast of Norway, has become operational, a company press release said. Of the 11 turbines involved in the project, the first turbine began power production on November 13, with another six scheduled to go online this year.
With the impending doom of climate change and the recent upshoot of fuel prices, countries around the world are looking to switch aggressively to renewable energy. While those in the tropics are looking at solar power, others that can access winds over the seas are looking to build offshore wind farms.
Although increasing the size of wind turbines is a straightforward way to increase the energy output of these facilities, it also comes with increased costs for constructing these structures. Floating wind farms are being looked at as a possible solution to this problem, and Hywind Tampen is the first real-world test of this kind.
A team of scientists from the Department of Energy’s Ames National Laboratory has developed a new characterization tool that allowed them to gain unique insight into a possible alternative material for solar cells. Under the leadership of Jigang Wang, senior scientist from Ames Lab, the team developed a microscope that uses terahertz waves to collect data on material samples. The team then used their microscope to explore methylammonium lead iodide (MAPbI3) perovskite, a material that could potentially replace silicon in solar cells.
Richard Kim, a scientist from Ames Lab, explained the two features that make the new scanning probe microscope unique. First, the microscope uses the terahertz range of electromagnetic frequencies to collect data on materials. This range is far below the visible light spectrum, falling between the infrared and microwave frequencies. Secondly, the terahertz light is shined through a sharp metallic tip that enhances the microscope’s capabilities toward nanometer length scales.
“Normally if you have a light wave, you cannot see things smaller than the wavelength of the light you’re using. And for this terahertz light, the wavelength is about a millimeter, so it’s quite large,” explained Kim. “But here we used this sharp metallic tip with an apex that is sharpened to a 20-nanometer radius curvature, and this acts as our antenna to see things smaller than the wavelength that we were using.”
With 3,774 days in space under its belt, the solar-powered X-37B has already traveled more than 1.3 billion miles.
After a record-breaking 908 days in orbit for its sixth mission, a U.S. military drone touched down at NASA’s Kennedy Space Center, early on Saturday.
“Since the X-37B’s first launch in 2010, it has shattered records and provided our nation with an unrivaled capability to rapidly test and integrate new space technologies,” stated Jim Chilton, a senior vice president for Boeing, its developer.
Wikimedia Commons.
The tiny space-shuttle X-37B, powered by solar energy carrying out scientific tests, broke the prior mission record, which took 780 days to complete, according to several media reports.