Toggle light / dark theme

In a new study, astronomers report novel evidence regarding the limits of planet formation, finding that after a certain point, planets larger than Earth have difficulty forming near low-metallicity stars.

Using the sun as a baseline, astronomers can measure when a star formed by determining its metallicity, or the level of heavy elements present within it. Metal-rich stars or nebulas formed relatively recently, while metal-poor objects were likely present during the early universe.

Previous studies found a weak connection between metallicity rates and planet formation, noting that as a star’s metallicity goes down, so, too, does planet formation for certain planet populations, like sub-Saturns or sub-Neptunes.

Its abundance of sunlight and heavy investment in solar cell technology has positioned Saudi Arabia well in its transition to becoming a leading exporter of renewable energy. Indeed, solar energy currently makes up more than 80% of the Kingdom’s green energy capacity. However, these cells bring a twisted irony, as their operation exposes them to overheating risks. Cooling systems are therefore necessary, but many depend on electricity.

An international research team led by KAUST Professor Qiaoqiang Gan has designed a potential solution. Their device needs no electricity, as it extracts water from the air using nothing more than gravity and relies on cheap, readily available materials.

Along with keeping the solar cells and other cool, the water can be repurposed for irrigation, washing, cooling buildings on which the solar cells are placed, and other applications.

In nature, photosynthesis powers plants and bacteria; within solar panels, photovoltaics transform light into electric energy. These processes are driven by electronic motion and imply charge transfer at the molecular level. The redistribution of electronic density in molecules after they absorb light is an ultrafast phenomenon of great importance involving quantum effects and molecular dynamics.

Hot carrier solar cells, a concept introduced several decades ago, have long been seen as a potential breakthrough in solar energy technology. These cells could surpass the Shockley–Queisser efficiency limit, which is a theoretical maximum efficiency for single-junction solar cells. Despite their promise, practical implementation has faced significant challenges, particularly in managing the rapid extraction of hot electrons across material interfaces.

Rio Tinto has ambitious goals when it comes to sustainability. According to the company’s website, it aims to transition all its facilities and operations to net-zero greenhouse gas emissions by 2050. To achieve this, the company is working with governments to scale up renewable energy resources where it works. For example, Rio Tinto invested more than $500 million to partner with the Canadian government to decarbonize an iron and titanium mine in Quebec.

Mining companies like Rio Tinto provide necessary metals and minerals for global clients. The company’s products and resources are used all over the world in items that people use in their daily lives. Unfortunately, mining with diesel fuel produces carbon dioxide. Rio Tinto is exploring the effectiveness of renewable energy sources in its operations to try and reduce the negative impacts mining has on the Earth.

The Diavik diamond mine features a historic solar power plant that can produce up to 4.2GW hours of electricity for its operations. The solar panels on-site use both the light of the sun as well as light reflected off of snow to generate electricity.

52 billion solar panels could soon be covering the American highway network. Researchers from the Chinese Academy of Sciences, Tsinghua University, Chinese Academy of Geosciences, and Columbia University have proposed a historic initiative which could see major global highways covered with solar panels.

The researchers publication “Roofing Highways With Solar Panels Substantially Reduces Carbon Emissions and Traffic Losses” in Earth’s Future advocate for the deployment of solar technology across the global highway network which spans up to 3.2 million kilometers.

In doing so, the researchers estimate that up to 17,578 TWh of electricity could be generated annually. This figure is equivalent to more than a staggering 60% of 2023’s energy consumption. This could offset up to 28% of global carbon emissions and reduce road accident incidences up to 11%.

A discovery six years ago took the condensed-matter physics world by storm: Ultra-thin carbon stacked in two slightly askew layers became a superconductor, and changing the twist angle between layers could toggle their electrical properties. The landmark 2018 paper describing “magic-angle graphene superlattices” launched a new field called “twistronics,” and the first author was then-MIT graduate student and recent Harvard Junior Fellow Yuan Cao.

Together with Harvard physicists Amir Yacoby, Eric Mazur, and others, Cao and colleagues have built on that foundational work, smoothing a path for more twistronics science by inventing an easier way to twist and study many types of materials.

A new paper in Nature describes the team’s fingernail-sized machine that can twist thin materials at will, replacing the need to fabricate twisted devices one by one. Thin, 2D materials with properties that can be studied and manipulated easily have immense implications for higher-performance transistors, such as solar cells, and quantum computers, among other things.

“We have demonstrated that high-performance and environmentally sustainable lithium-ion batteries are not only possible, but also within reach.” Scientists convert waste from solar panels into advanced battery technology — and it could solve major issues with clean energy first appeared on The Cool Down.