Toggle light / dark theme

Electric microwave plasma thruster could rival traditional jet engines

A Chinese team has demonstrated a prototype of a microwave plasma thruster capable of working in the Earth’s atmosphere and producing thrust with an efficiency comparable to the jet engines you’d find on modern airliners – under laboratory conditions.

Plasma thrusters are already operational on spacecraft as a means of solar-electric locomotion, using xenon plasma, but such things are no use in the Earth’s atmosphere, as accelerated xenon ions lose most of their thrust force to friction against the air. Not to mention, they only make a small amount of thrust in the first place.

This design, conceived and built by a team at the Institute of Technical Sciences at Wuhan University, uses only air and electricity, and appears to produce an impressive push that may see it become relevant to electric aircraft applications.

Cracking the Code on Recycling Energy Storage Batteries

This is one of four blogs in a series examining current challenges and opportunities for recycling of clean energy technologies. Please see the introductory post, as well as other entries on solar panels and wind turbines.


us department of energy[ caption] courtesy union concerned scientists. by james gignac, lead midwest energy analyst this is one four blogs in a series examining current challenges and opportunities for recycling clean technologies. please see the introductory post, as well other entries on solar panels and wind turbines. special thanks to jessica garcia, ucs’s=

China Just Built a 250-Acre Solar Farm Shaped Like a Giant Panda

Well, at least they’re having fun with it.


Most sun oriented homesteads adjust their sunlight based exhibits in lines and segments to shape a matrix.

Another sun based force plant in Datong, China, be that as it may, chose to have some good times with its structure. China Dealers New Vitality Gathering, one of the nation’s biggest clean vitality administrators, fabricated a 248-section of land sun powered ranch looking like a mammoth panda.

Scientists borrow solar panel tech to create new ultrahigh-res OLED display

Ultra high-res displays for gadgets and tv sets may be coming. 😃


By expanding on existing designs for electrodes of ultra-thin solar panels, Stanford researchers and collaborators in Korea have developed a new architecture for OLED—organic light-emitting diode—displays that could enable televisions, smartphones and virtual or augmented reality devices with resolutions of up to 10,000 pixels per inch (PPI). (For comparison, the resolutions of new smartphones are around 400 to 500 PPI.)

Such high-pixel-density displays will be able to provide stunning images with true-to-life detail—something that will be even more important for headset displays designed to sit just centimeters from our faces.

The advance is based on research by Stanford University materials scientist Mark Brongersma in collaboration with the Samsung Advanced Institute of Technology (SAIT). Brongersma was initially put on this research path because he wanted to create an ultra-thin solar panel design.

PV-powered drone for emergency services

Netherlands-based technology companies Avy and Wattlab have conducted the first test flight of a drone prototype that is planned to be used in medical projects in Africa.


Wattlab, a Dutch clean-tech start-up founded by Sweden-based power utility Vattenfall and Delft University of Technology, and Netherlands-based drone manufacturer Avy have announced that a drone equipped with special solar foils produced by Wattlab has successfully performed its first test flight.

“The solar-powered prototype is designed to be used for urgent medical transportation, emergency services, and nature conservation,” the two companies stated, adding that the solar films were installed on the wings while maintaining aerodynamics and without increasing significantly the weight. “The solar technology developed in this project is fully integrated into the wing shape and adds no extra weight,” explained Bo Salet, founder of Wattlab.

In the future, the two tech companies are planning to reduce the wings’ weight, increase their surface, and deploy more solar films. “Solar cells with a higher efficiency will be tested in the coming month,” they further explained.

This white paint could reduce the need for air conditioning

“We’re not moving heat from the surface to the atmosphere. We’re just dumping it all out into the universe, which is an infinite heat sink,” said Xiangyu Li, a postdoctoral researcher at the Massachusetts Institute of Technology who worked on this project as a Ph.D. student in Ruan’s lab.


WEST LAFAYETTE, Ind. — What if paint could cool off a building enough to not need air conditioning?

Purdue University engineers have created white paint that can keep surfaces up to 18 degrees Fahrenheit cooler than their ambient surroundings – almost like a refrigerator does, but without consuming energy.

According to the researchers, the paint would replace the need for air conditioning by absorbing nearly no solar energy and sending heat away from the building. Without the building heating up, air conditioning wouldn’t have to kick on.

World’s Largest Solar Farm to Be Built in Australia — But They Won’t Get The Power

It looks like Australia with be exporting solar power to other countries with less space.


A major renewable energy project in Australia billed as the world’s largest solar farm in development has had its proposed location revealed.

The AUD$20 billion facility – the heart of an ambitious electricity network called the Australia–ASEAN Power Link – will be built at a remote cattle station in the Northern Territory, roughly halfway between Darwin and Alice Springs.

The gargantuan 10-gigawatt array – spread out across some 20,000 football fields’ worth of photovoltaic panels – might be situated close to the heart of the Australian outback, but the energy reaped from the plant will ultimately be transported far, far away from the sunburnt country.

Smart windows darken and become solar cells when heated

Windows are great for letting in light, but in summer months that comes with an unwanted side order of heat, causing many people to run the air conditioning non-stop. Now, researchers have developed windows that can change color automatically when heated by sunlight, to keep buildings cool – and to top it off, they’re solar panels as well.

Color-changing glass has been around for a long time, most commonly as transition lenses for eyeglasses that tint automatically under bright light. More recent developments have made it electronic and switchable on demand, and scaled it up to window size. At the same time, transparent (or semi-transparent) solar cells are getting more efficient, to the point where they can be fitted into windows.

In the new study, researchers at the US Department of Energy’s National Renewable Energy Laboratory (NREL) has combined the two technologies into one window. The “thermochromic photovoltaic” tech, as they call it, can switch colors when heated up by sunlight to block glare and reduce the need for cooling, and when it does it also starts harvesting energy from that light.