БЛОГ

Archive for the ‘solar power’ category: Page 98

Jul 25, 2018

Novel membrane advances low-cost, grid-scale energy storage

Posted by in categories: solar power, sustainability, transportation

Oak Ridge National Laboratory scientists have developed a crucial component for a new kind of low-cost stationary battery system utilizing common materials and designed for grid-scale electricity storage.

Large, economical electricity storage systems can benefit the nation’s grid in numerous ways: balancing loads between peak and off-peak demand times; supplying energy during outages; storing electricity from fluctuating sources like wind and solar power; and accommodating extreme fast charging of electric vehicles.

The grid chiefly relies on hydropower facilities for , although stationary systems using lithium-ion batteries are increasing. However, lithium is expensive and mostly sourced from countries outside the United States.

Continue reading “Novel membrane advances low-cost, grid-scale energy storage” »

Jul 24, 2018

Team lands new efficiency breakthrough for emerging solar cell material

Posted by in categories: solar power, sustainability

UNSW solar energy researcher and Scientia Fellow Dr. Xiaojing Hao and her team have achieved two energy efficiency world records for the solar cell material of the future, sulfide kesterite.

Dr. Hao and her team broke the 10 per cent barrier for not only sulfide kesterite but also for a standard sized kesterite solar cell, whether pure sulfide material or incorporating less-desirable selenium.

Continue reading “Team lands new efficiency breakthrough for emerging solar cell material” »

Jul 24, 2018

Beamed propulsion doable now, and with it space solar power

Posted by in categories: particle physics, solar power, space, sustainability

A dream of advocates of low cost space access has been beam propulsion of various types, whether laser, microwave, or particle beams.

Read more

Jul 18, 2018

More Energy Storage Looming For Wind Power

Posted by in categories: nuclear energy, solar power, sustainability

It wasn’t that long ago that solar power and wind power were labeled as marginal, ‘green’ electricity, but in the last five years or so they have become much more affordable and economically more feasible than conventional sources like coal and nuclear.

What supported solar along the way partly was the emergence of energy storage in the form of battery systems. Electricity can now be made by solar power systems and the excess can be stored for usage at night or on less sunny days. At least, solar power has been paired successfully with energy storage, and it is catching up with solar power. The cost of this newish technology is dropping, “The overall estimated cost fell 32% in 2015 and 2016, according to the 2017 GTM Reseach utility-scale storage report. That will slow over the next five years, GTM reported. But battery storage is — in certain places and applications — on its way to cost-competitiveness.”

According to Lazard, it could drop another 36% between 2018 and 2022. The UC-Berkeley research study, “Energy Storage Deployment and Innovation for the Clean Energy Transition,” predicted lithium-ion batteries could hit the $100 per kilowatt-hour mark in 2018.

Continue reading “More Energy Storage Looming For Wind Power” »

Jul 16, 2018

Four ways the electric system can better integrate microgrids

Posted by in categories: solar power, sustainability

The U.S. electric system is adapting to a new wave of distributed energy resources, such as solar panels and energy storage. Some of these work together in localized networks known as microgrids—nearly 2,000 are now operating or planned across the country, according to one estimate.

Prized for their flexibility, microgrids can run in an “island” mode or connect to the main grid. Although microgrids can potentially enhance reliability, the current electric system needs upgrading in order to synchronize with them properly.

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory study the impact of microgrids and analyze ways to assimilate them smoothly within the larger electric system. Part of this work focuses on the distribution system—the last leg of electricity’s journey from source to outlet.

Read more

Jul 14, 2018

The Nuclear Reactor Renaissance: Space Exploration and National Security

Posted by in categories: climatology, nuclear energy, security, solar power, space travel, sustainability

The nuclear power sector is seeing a resurgence in innovation, supported by new policies and emerging technologies. The general public and various governments are starting to grasp the value of nuclear power as an alternative, sustainable energy source. Unlike renewables, such as wind and solar power, nuclear energy is not dependent on weather conditions for power generation, having a capacity factor of over 90 percent. Nuclear power is also more eco-friendly than natural gas and coal and its “carbon-free” attributes are seen as critical in the fight against climate change.

For decades, advancements in the nuclear power sector have been incremental and focused largely on making systems “walk away safe.” Today, the industry is pushing the boundaries and exploring applications for nuclear power in ways that have never before been considered.

BWXT is at the forefront of this nuclear renaissance. This 6,000-employee company operates on the model of letting capital drive strategy. BWXT is constantly evaluating new ways to ensure workers, funding, and policies are utilized in the most effective way possible. The company also analyzes the needs of numerous other industries to determine how nuclear power could provide innovative solutions.

Continue reading “The Nuclear Reactor Renaissance: Space Exploration and National Security” »

Jul 9, 2018

X-SpaceX Raptor designer has ready for development designs for nuclear rocket that will be up to 7 times better than BFR

Posted by in categories: nuclear energy, solar power, space travel, sustainability

John Bucknell created the pre-conceptual design for the SpaceX Raptor engine. It will be the advanced full-flow staged combustion rocket engine for the SpaceX BFR. He designed and built the subscale Raptor rocket for proof of concept testing able to test eighty-one configurations of main injector.

John Bucknell says the nuclear turbo rocket technology and his designs are ready for development. The air-breathing nuclear thermal rocket will enable 7 times more payload fraction to be delivered to low-earth orbit and it will have 6 times the ISP (rocket fuel efficiency) as chemical rockets. The rocket will have two to three times the speed and performance of chemical rockets for missions outside of the atmosphere.

The fully reusable nuclear rocket will be a single stage to orbit system which will be able to make space-based solar power several times cheaper than coal power. Using the 11-meter diameter version of this rocket to build space-based solar power will enable solar power at less than 2 cents per kilowatt-hour.

Continue reading “X-SpaceX Raptor designer has ready for development designs for nuclear rocket that will be up to 7 times better than BFR” »

Jul 6, 2018

New world record for direct solar water-splitting efficiency

Posted by in categories: nanotechnology, solar power, sustainability

Hydrogen will play a central role as a storage medium in sustainable energy systems. An international team of researchers has now succeeded in raising the efficiency of producing hydrogen from direct solar water-splitting to a record 19 percent. They did so by combining a tandem solar cell of III-V semiconductors with a catalyst of rhodium nanoparticles and a crystalline titanium dioxide coating. Teams from the California Institute of Technology, the University of Cambridge, Technische Universität Ilmenau, and the Fraunhofer Institute for Solar Energy Systems ISE participated in the development work. One part of the experiments took place at the Institute for Solar Fuels in the Helmholtz-Zentrum Berlin.

Photovoltaics are a mainstay of renewable-energy supply systems, and sunlight is abundantly available worldwide – but not around the clock. One solution for dealing with this fluctuating power generation is to store sunlight in the form of chemical energy, specifically by using sunlight to produce hydrogen. This is because hydrogen can be stored easily and safely, and used in many ways – whether in a fuel cell to directly generate electricity and heat, or as feedstock for manufacturing combustible fuels. If you combine solar cells with catalysts and additional functional layers to form a “monolithic photoelectrode” as a single block, then splitting water becomes especially simple: the photocathode is immersed in an aqueous medium and when light falls on it, hydrogen is formed on the front side and oxygen on the back.

Read more

Jul 5, 2018

A voltage breakthrough with perovskite solar cells to edge closer to commercialization

Posted by in categories: solar power, sustainability

A new technique has produced the highest performing inverted perovskite solar cell ever recorded. A team of researchers from Peking University and the Universities of Surrey, Oxford and Cambridge detail a new way to reduce an unwanted process called non-radiative recombination, where energy and efficiency is lost in perovskite solar cells.

The team created a technique called Solution-Process Secondary growth (SSG) which increased the voltage of inverted perovskite solar cells by 100 millivolts, reaching a high of 1.21 volts without compromising the quality of the solar cell or the electrical current flowing through a device. They tested the technique on a device which recorded a PCE of 20.9 percent, the highest certified PCE for inverted perovskite solar cells ever recorded.

Researchers are still working towards increasing efficiency and stability, prolonging lifetime and replacing toxic materials with safer ones. Researchers are also looking at the benefits of combining perovskites with other technologies, like silicon for tandem cells.

Continue reading “A voltage breakthrough with perovskite solar cells to edge closer to commercialization” »

Jul 5, 2018

Bacteria-powered solar cell converts light to energy, even under overcast skies

Posted by in categories: solar power, sustainability

University of British Columbia researchers have found a cheap, sustainable way to build a solar cell using bacteria that convert light to energy.

Their cell generated a current stronger than any previously recorded from such a device, and worked as efficiently in dim light as in bright light.

This innovation could be a step toward wider adoption of solar power in places like British Columbia and parts of northern Europe where overcast skies are common. With further development, these solar —called “biogenic” because they are made of living organisms—could become as efficient as the synthetic cells used in conventional solar panels.

Continue reading “Bacteria-powered solar cell converts light to energy, even under overcast skies” »