Toggle light / dark theme

Envisioning a Neutrino Laser

A Bose-Einstein condensate of radioactive atoms could turn into a source of intense, coherent, and directional neutrino beams, according to a theoretical proposal.

Neutrinos are the most abundant massive particles in the Universe, yet they are the ones about which we know the least. What makes these elusive particles hard to study is their feeble interaction with matter—trillions of neutrinos pass through our bodies every second without leaving a trace. However, neutrinos may hold deep secrets about the Universe—understanding their properties could hint at new particles and forces beyond the standard model of particle physics or shed light on why matter came to dominate over antimatter. Despite these tantalizing prospects, some of the most basic questions about neutrinos remain unanswered. To address such questions experimentally, Benjamin Jones of the University of Texas at Arlington and Joseph Formaggio of MIT suggest that a Bose-Einstein condensate (BEC) of radioactive atoms could offer a platform for building a “neutrino laser” [1].

BREAKING: Tesla Megablock Revolution | Fast Power, Grid Stability & AI Ready Solutions

Tesla megablock revolution | fast power, grid stability & AI ready solutions.

## Tesla’s Megablock is a revolutionary energy storage solution that enables fast power, grid stability, and scalability to support widespread renewable energy adoption, AI data centers, and energy independence.

## Questions to inspire discussion.

🚀 Q: How quickly can Tesla’s Megablock be deployed? A: Tesla’s Megablock can deliver 1 GWh of power in just 20 days, capable of powering 40,000 homes in less than a month.

⚡ Q: What makes the Megablock’s deployment so efficient? A: The Megablock’s modular, plug-and-play design allows for rapid scalability and deployment, with integrated transformers and switchgear reducing complexity.

Grid Stability and Performance.

NASA Sets Coverage for Northrop Grumman CRS-23, SpaceX Falcon 9 Launch

NASA, Northrop Grumman, and SpaceX are targeting no earlier than 6:11 p.m. EDT, Sunday, Sept. 14, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23.

Watch the agency’s launch and arrival coverage on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.

Filled with more than 11,000 pounds of supplies, the Northrop Grumman Cygnus XL spacecraft, carried on a SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission will be the first flight of the Cygnus XL, the larger, more cargo-capable version of the company’s solar-powered spacecraft.

INTEGRAL observes exceptionally bright X-ray flares from Cygnus X-1

Using ESA’s INTEGRAL spacecraft, astronomers have detected exceptionally bright X-ray flares from the Cygnus X-1 X-ray binary system. This is the first time that such strong flaring activity has been observed in this system although it has been monitored for decades. The new findings were detailed in a paper published August 28 on the pre-print server arXiv.

NASA Announces CHAPEA Crew for Year-Long Mars Mission Simulation

Four research volunteers will soon participate in NASA’s year-long simulation of a Mars mission inside a habitat at the agency’s Johnson Space Center in Houston. This mission will provide NASA with foundational data to inform human exploration of the Moon, Mars, and beyond.

Ross Elder, Ellen Ellis, Matthew Montgomery, and James Spicer enter into the 1,700-square-foot Mars Dune Alpha habitat on Sunday, Oct. 19, to begin their mission. The team will live and work like astronauts for 378 days, concluding their mission on Oct. 31, 2026. Emily Phillips and Laura Marie serve as the mission’s alternate crew members.

Through a series of Earth-based missions called CHAPEA (Crew Health and Performance Exploration Analog), carried out in the 3D-printed habitat, NASA aims to evaluate certain human health and performance factors ahead of future Mars missions. The crew will undergo realistic resource limitations, equipment failures, communication delays, isolation and confinement, and other stressors, along with simulated high-tempo extravehicular activities. These scenarios allow NASA to make informed trades between risks and interventions for long-duration exploration missions.

Astronomers uncover a hidden world on the solar system’s edge

Astronomers have uncovered a massive new trans-Neptunian object, 2017 OF201, lurking at the edge of our solar system. With an orbit stretching 25,000 years and a size that may qualify it as a dwarf planet, this mysterious world challenges long-held assumptions about the “empty” space beyond Neptune. Its unusual trajectory sets it apart from other distant bodies and may even cast doubt on the controversial Planet Nine hypothesis.

Astronomers capture breathtaking first look at a planet being born

WISPIT2b, a gas giant forming around a young Sun-like star, has been directly imaged for the first time inside a spectacular multiringed disk. Still glowing and actively accreting gas, the planet offers a unique opportunity to study planetary birth and evolution.

An international team of astronomers, co-led by researchers at University of Galway, has made the unexpected discovery of a new planet.

Detected at an early stage of formation around a young analog of our own Sun, the planet is estimated to be about 5 million years-old and most likely a gas giant of similar size to Jupiter.

/* */