The brightest fast radio burst yet, “RBFLOAT,” was traced to a nearby galaxy by the upgraded CHIME telescope

Stars die and vanish from sight all the time, but astronomers were puzzled when one that had been stable for more than a decade almost disappeared for eight months.
Between late 2024 and early 2025, one star in our galaxy, dubbed ASASSN-24fw, dimmed in brightness by about 97%, before brightening again. Since then, scientists have been swapping theories about what was behind this rare, exciting event.
Now, an international team led by scientists at The Ohio State University may have come up with an answer to the mystery. In a new study recently published in The Open Journal of Astrophysics, astronomers suggest that because the color of the star’s light remained unchanged during its dimming, the event wasn’t caused by the star evolving in some way, but by a large cloud of dust and gas around the star that occluded Earth’s view of it.
An international team of astronomers has observed one of the brightest fast radio bursts (FRBs) ever detected—and pinpointed its location in a nearby galaxy (NGC 4141). FRB 20250316A has been nicknamed RBFLOAT, which stands for Radio Brightest FLash Of All Time. The finding and the discovery of the location surprised the team and revealed new insight into FRBs, which are one of astrophysics’ biggest mysteries.
For decades, scientists puzzled over why Uranus seemed colder than expected. Now, an international research team led by the University of Houston has solved the mystery: Uranus emits more heat than it gets from the Sun, meaning it still carries internal warmth from its ancient formation. This revelation rewrites what scientists know about the ice giant’s history, strengthens the case for NASA’s upcoming mission, and offers fresh insight into the forces shaping not only other planets, but also Earth’s future climate.
A new study led by University of Houston researchers, in collaboration with planetary scientists worldwide, suggests Uranus does have its own internal heat — an advance that not only informs NASA’s future missions but also deepens scientists’ understanding of planetary systems, including processes that influence Earth’s climate and atmospheric evolution.
The discovery resolves a long-standing scientific mystery about the giant planet, because observational analyses from Voyager 2 in 1986 didn’t suggest the presence of significant internal heat — contradicting scientists’ understanding of how giant planets form and evolve.
What does it take to turn the Sun into a power grid? Discover the step-by-step path from asteroid mining to a star-spanning megastructure.
Watch my exclusive video Dark Biospheres: https://nebula.tv/videos/isaacarthur–…
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa…
Use the link https://gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $36.
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a…
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Building a Dyson Swarm… from Scratch.
Written, Produced & Narrated by: Isaac Arthur.
Graphics: Bryan Versteeg, Jeremy Jozwik, Ken York Sergio Botero.
Select imagery/video supplied by Getty Images.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Chapters.
0:00 Intro What Is a Dyson Swarm?
5:49 Gathering the Materials.
9:40 Proto-Swarm: Our First Steps.
13:05 Mining the Solar System.
14:33 Beyond Mercury: The True Scale of the Swarm.
19:10 Ghosts of Friendship Past.
20:34 Building Habitats: How Much Mass Do We Really Need?
27:42 The Long Dawn of a Stellar Civilization.
Moon’s time capsule: Apollo-era rock core sample tells tale of ancient landslide.
NASA intentionally set aside a significant portion of this haul for future study, a decision now paying off.
The rock core was studied using advanced micro-CT scanning to analyze its contents in fine detail, an imaging technology that didn’t exist when the samples were first brought back.
The new research focused on clasts, fragments broken off from the mountain during the landslide.