БЛОГ

Archive for the ‘space’ category: Page 1009

Oct 14, 2012

The Kline Directive: Economic Viability

Posted by in categories: business, complex systems, defense, economics, education, engineering, finance, military, nuclear weapons, philosophy, physics, policy, scientific freedom, space, sustainability

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In this post I will explore Economic Viability. I have proposed the Interstellar Challenge Matrix (ICM) to guide us through the issues so that we can arrive at interstellar travel sooner, rather than later. Let us review the costs estimates of the various star drives just to reach the velocity of 0.1c, as detailed in previous blog posts:

Interstellar Challenge Matrix (Partial Matrix)

Propulsion Mechanism Legal? Costs Estimates
Conventional Fuel Rockets: Yes Greater than US$1.19E+14
Antimatter Propulsion: Do Not Know. Between US$1.25E+20 and US$6.25E+21
Atomic Bomb Pulse Detonation: Illegal. This technology was illegal as of 1963 per Partial Test Ban Treaty Between $2.6E12 and $25.6E12 . These are Project Orion original costs converted back to 2012 dollar. Requires anywhere between 300,000 and 30,000,000 bombs!!
Time Travel: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Quantum Foam Based Propulsion: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Small Black Hole Propulsion: Most Probably Illegal in the Future Using CERN to estimate. At least US$9E+9 per annual budget. CERN was founded 58 years ago in 1954. Therefore a guestimate of the total expenditure required to reach its current technological standing is US$1.4E11.

Note Atomic Bomb numbers were updated on 10/18/2012 after Robert Steinhaus commented that costs estimates “are excessively high and unrealistic”. I researched the topic and found Project Orion details the costs, of $2.6E12 to $25.6E12, which are worse than my estimates.

Continue reading “The Kline Directive: Economic Viability” »

Oct 14, 2012

Congratulations Skydiver Felix Baumgartner

Posted by in categories: business, complex systems, defense, engineering, events, fun, philosophy, physics, space

Congratulations Skydiver Felix Baumgartner, on the success of your 24 mile skydive. You proved that it is possible to bail out of a space ship and land on Earth safely.

The records are nice to have but the engineering was superb!

Oct 12, 2012

The Kline Directive: Safety Awareness

Posted by in categories: cosmology, defense, engineering, life extension, military, particle physics, physics, space, sustainability

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In this post I will explore Safety Awareness.

In the heady rush to propose academically acceptable ideas about new propulsions systems or star drives it is very easy to overlook safety considerations. The eminent cosmologist Carl Sagan said it best “So the problem is not to shield the payload, the problem is to shield the earth” (Planet. Space Sci., pp. 485 – 498, 1963)

Continue reading “The Kline Directive: Safety Awareness” »

Oct 11, 2012

The Unlikely Option? An Industrial Base on Planet Mercury

Posted by in categories: engineering, futurism, habitats, space

At first glance, one would consider the proposition of a base on Mercury, our Sun’s closest satellite, as ludicrous. With daytime temperatures reaching up to 700K — hot enough to melt lead — while the dark side of the planet experiences a temperature average of 110K — far colder than anywhere on Earth, combined with the lack of any substantial atmosphere, and being deep in the Sun’s gravitational potential well, conditions seem unfavorable.

First impressions can be misleading however, as it is well known that polar areas do not experience the extreme daily variation in temperature, with temperatures in a more habitable range (< 273 K (0 °C)) and it has been anticipated there may even be deposits of ice inside craters. http://nssdc.gsfc.nasa.gov/planetary/ice/ice_mercury.html

And is not just habitable temperature and ice-water in its polar regions that make Mercury an interesting candidate for an industrial base. There are a number of other factors making it more favourable than either a Looner or Martian base:

Mercury is the second densest planet in our solar system — being just slightly less dense than our Earth — and is rich in valuable resources, the highest concentrations of many valuable minerals of any surface in the Solar System, in highly concentrated ores. Also, being the closest planet to the Sun, Mercury has vast amounts of solar power available, and there are predictions that Mercury’s soil may contain large amounts of helium-3, which could become an important source of clean nuclear fusion energy on Earth and a driver for the future economy of the Solar System. Therefore it is a strong candidate for an industrial base.

Continue reading “The Unlikely Option? An Industrial Base on Planet Mercury” »

Oct 10, 2012

The Kline Directive: Legal Standing

Posted by in categories: business, complex systems, defense, economics, engineering, ethics, finance, philosophy, physics, policy, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In this post I will explore Legal Standing.

With respect to space exploration, the first person I know of who pushed the limits of the law is Mr. Gregory W. Nemitz of The Eros Project. He started this project in March 2000. As a US taxpayer, Nemitz made the claim that he is the Owner of Asteroid 433, Eros, and published his claim about 11 months prior to NASA landing its “NEAR Shoemaker” spacecraft on this asteroid.

Continue reading “The Kline Directive: Legal Standing” »

Oct 9, 2012

The Kline Directive: Introduction

Posted by in categories: business, complex systems, defense, economics, engineering, ethics, finance, philosophy, physics, policy, space

Science and engineering are hard to do. If it wasn’t we would have a space bridge from here to the Moon by now. If you don’t have the real world practical experience doing either science or engineering you won’t understand this, or the effort and resources companies like Boeing, Lockheed, SpaceX, Orbital Sciences Corp, Scaled Composites, Virgin Galactic, and the Ad Astra Rocket Company have put into their innovations and products to get to where they are, today.

If we are to achieve interstellar travel, we have to be bold.
We have to explore what others have not.
We have to seek what others will not.
We have to change what others dare not.

The dictionary definition of a directive is, an instruction or order, tending to direct or directing, and indicating direction.

Dictionary of Military and Associated Terms, US Department of Defense 2005, provides three similar meanings,

Continue reading “The Kline Directive: Introduction” »

Oct 8, 2012

Congratulations SpaceX

Posted by in categories: engineering, finance, open source, scientific freedom, space

The New York Time reported Space Exploration Technologies of Hawthorne, Calif. — SpaceX, for short — launched its Falcon 9 rocket on schedule at 8:35 p.m. Eastern time from Cape Canaveral, Fla.

The Wall Street Journal reported, “trouble-free countdown followed by liftoff at 8:35 p.m. ET, precisely as scheduled.”

Maj. Gen. Charles F. Bolden Jr., the NASA administrator said, “It actually marks the beginning of true commercial spaceflight to take cargo to the International Space Station for us.”

This is a milestone in the relationship between public and private enterprise. The handoff of what public enterprise, NACA/NASA, pioneered, developed and brought to maturity, to private enterprises capable of lowering the costs of space travel with ambitions to do more than stay in low earth orbit.

Congratulations, to Elon Musk, who believed it was possible, and went ahead and proved all the nay sayers wrong. This is an example of how one man’s vision and tenacity has changed the way we perceive the world. Congratulations!

Oct 7, 2012

Debunking Pulse Detonation Engines — Yes, No, Maybe

Posted by in categories: business, defense, engineering, military, nuclear weapons, physics, space, treaties

Previous posting in this Debunking Series.

In this post we will look at the last three types of engines. Can these engine technologies be debunked?

Start with the boring stuff. Nuclear/plasma engines. For more information look up Franklin Chang-Diaz’s Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Real. Cannot be debunked.

Now for the more interesting stuff. The second is Pulse Detonation Engines (PDE). This type of engine uses detonation waves to combust fuel and oxidizer mixture. “The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave initiated by an ignition source.” Theoretically this type of engine is capable of speeds from subsonic to Mach 5.

Continue reading “Debunking Pulse Detonation Engines — Yes, No, Maybe” »

Oct 4, 2012

How do you debunk this?

Posted by in categories: defense, engineering, finance, particle physics, physics, scientific freedom, space

Previous post in this Debunking Series.

——-

This video was broadcast on G4TV, September 19th 2012.

http://www.g4tv.com/videos/60838/dr-eric-w-davis-on-new-ligh…g-science/

Continue reading “How do you debunk this?” »

Oct 1, 2012

Debunking Antimatter Rockets for Interstellar Travel

Posted by in categories: education, engineering, physics, policy, space

Previous Post in this Debunking Series.

Why is it necessary to debunk bad or unrealistic technologies? If don’t we live in a dream world idealized by theoretical engineering that has no hope of ever becoming financially feasible. What a waste of money, human resources and talent. I’d rather we know now upfront and channel our energies to finding feasible engineering and financial solutions. Wouldn’t you?

We did the math required to figure out the cost of antimatter fuel one would require just to reach 0.1c and then cost at that velocity, never mind about reaching Alpha Centauri.

Table 2: Antimatter Rocket Fuel Costs to Alpha Centuariat 0.1c (in metric tons)
Source of Estimates Amount of Antimatter Required Maximum Velocity

Spacecraft Mass

Continue reading “Debunking Antimatter Rockets for Interstellar Travel” »