While roboticists have developed increasingly sophisticated systems over the past decades, ensuring that these systems can autonomously operate in real-world settings without mishaps often proves challenging. This is particularly difficult when these robots are designed to be deployed in complex environments, including space and other planets.
Category: space – Page 136
NASA’s Lucy spacecraft’s recent exploration of asteroid Dinkinesh not only highlighted the asteroid’s internal complexities but also led to a fascinating discovery: the formation of a double moon, Selam. This rare configuration, known as a contact binary, formed from debris orbiting Dinkinesh after a significant geological event. Credit: NASA/SwRI/Johns Hopkins APL/NOIRLab.
NASA ’s Lucy spacecraft’s November 2023 flyby of asteroid Dinkinesh revealed significant geological features indicating its internal strength and complex history. Images showed a trough, a ridge, and a contact binary satellite, Selam. These findings, suggesting that Dinkinesh responded dynamically to stress over millions of years, help scientists understand the formation and evolution of small bodies in the solar system.
Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft reveal intriguing details. They show a trough on Dinkinesh where a large piece — about a quarter of the asteroid — suddenly shifted, a ridge, and a separate contact binary satellite (now known as Selam). Scientists say this complicated structure shows that Dinkinesh and Selam have significant internal strength and a complex, dynamic history.
Join our newsletter to get the latest military space news every Tuesday by veteran defense journalist Sandra Erwin.
The estimated $1 billion IDIQ contract — a pre-negotiated agreement between the government and multiple vendors — is for a program known as R2C2, short for Rapid Resilient Command and Control, focused on developing a next-generation ground system built on a commercial cloud architecture.
Turns out growing food in the dry, rocky dirt of Mars holds valuable insights for growing crops in the climate-ravaged soil here on Earth.
Chen explained that the team is currently looking for other mechanisms that could also produce rogue planets. This includes the possibility that other stars could fly by planetary systems and cause a gravitational disturbance that leads to a planet being exiled. This could be a rather efficient way to produce rogue planets, whether from around a single star or from a binary system.
Chen is unlikely to give up his investigation into rogue planets. This means the Taiwanese astronomer’s efforts could help to bring these cosmic orphans unbound from their stars “in from the cold” — at least figuratively.
“I like planets! When I was 8 years old, I decided to become an astronomer and studied the nine planets in our solar system before Mike Brown changed that by reclassifying Pluto,” Chen joked. “However, nowadays, more than 10,000 exoplanets have been found, displaying unexpected characteristics for us to study. Rogue planets are not alone; we should not let them be orphans but consider them members of our planetary family.”
Planet Caravan
Posted in space
Traveling for centuries in a multi generation space ark at a small percentage of the speed of light a hollowed out asteroid the world is hollow and I have touched the sky.
Video for “Planet Caravan” a song performed by Black SabbathNew channel : https://www.youtube.com/channel/UCqjB_4bCKg80mnY5TFuN9egI do not own the rights.
Virgin Galactic is using its SpaceShipTwo to launch the final commercial flight of VSS Unity. This is the 17th flight of the VSS Unity, before the company plans to upgrade the vehicle.
The commercial crew on this mission is composed of a researcher affiliated with Axiom Space, two private Americans, and a private Italian. The Virgin Galactic crew on Unity will be Commander Nicola Pecile and pilot Jameel Janjua.
The ‘Galactic 07’ autonomous rack-mounted research payloads will include a Purdue University experiment designed to study propellant slosh in fuel tanks of maneuvering spacecraft, as well as a UC Berkeley payload testing a new type of 3D printing.
Expected Takeoff: 10:30 a.m. Eastern Time.
⚡ Become a member of NASASpaceflight’s channel for exclusive discord access, fast turnaround clips, and other exclusive benefits. Your support helps us continue our 24/7 coverage. ⚡
In a paper published in Geophysical Research Letters, researchers have discovered that the turbulence in the thermosphere exhibits the same physical laws as the wind in the lower atmosphere. Furthermore, wind in the thermosphere predominantly rotates in a cyclonic direction, in that it rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere.
New studies show photon polarization is constant in varying environments, potentially improving plasma heating methods for fusion energy advancement.
Light, both literally and figuratively, pervades our world. It eliminates darkness, conveys telecommunications signals across continents, and reveals the unseen, from distant galaxies to microscopic bacteria. Light can also help heat the plasma within ring-shaped devices known as tokamaks as scientists work to leverage the fusion process to produce green electricity.
Recently, researchers from Princeton Plasma Physics Laboratory have discovered that one of the fundamental properties of photons—polarization—is topological, meaning it remains constant even as the photon transitions through various materials and environments. These findings, published in Physical Review D, could lead to more effective plasma heating techniques and advancements in fusion research.