Toggle light / dark theme

Elon Musk Makes an Insane Prediction

The CEO of Tesla has made it his mission to colonize the planet Mars in our lifetime.

Elon Musk is known for making wild promises and setting outrageous goals. It’s one of his detractors’ biggest criticisms.

But it is also one of the visionary entrepreneur’s driving forces. He thrives on setting goals that society broadly deems unattainable. He loves nothing more than having his back to the wall, the odds against him.

Hubble Telescope Gauges Mass of Lone White Dwarf Using Einstein’s Gravitational Microlensing

Science Daily reports that the astronomers found out that the mass of this lone white dwarf is equivalent to 56% of the sun’s weight. It aligns with previous theoretical predictions regarding the white dwarf’s mass, and it also sheds light on persisting theories regarding the evolution of these white dwarfs as a result of usual star evolution. The interesting observation grants further understanding of theories regarding white dwarf composition and structure.

According to the Space Academy, the astronomers made use of the renowned Hubble Space Telescope to gauge this lone white dwarf’s mass. The dwarf is known as LAWD 37.

Blue stragglers are the weird grandparents of the galaxy

Blue straggler stars are the weird grandparents of the galaxy: They should be old, but they act young. Finding and studying these strange stars helps us understand the complicated life cycles of normal, more well-behaved stars.

All stars follow a particular path in life, known as the main sequence. The moment they begin fusing hydrogen in their cores, they maintain a strict relationship between their brightness and temperature. Different stars will have different combinations of brightness and temperature, but they all obey the same relationship. For example, smaller stars, like red dwarfs, will be relatively dim but also cool, with their surfaces turning a characteristic shade of red. Medium stars, like the sun, will be both hotter and brighter, turning white. The largest stars will be both incredibly bright and extremely hot, making them appear blue.

New models shed light on life’s origin

The first signs of life emerged on Earth in the form of microbes about four billion years ago. While scientists are still determining exactly when and how these microbes appeared, it’s clear that the emergence of life is intricately intertwined with the chemical and physical characteristics of early Earth.

“It is reasonable to suspect that life could have started differently—or not at all—if the early chemical characteristics of our planet were different,” says Dustin Trail, an associate professor of and environmental sciences at the University of Rochester.

But what was Earth like billions of years ago, and what characteristics may have helped life to form? In a paper published in Science, Trail and Thomas McCollom, a research associate at the University of Colorado Boulder, reveal key information in the quest to find out. The research has important implications not only for discovering the but also in the search for life on other planets.

Blue Alchemist Technology Powers our Lunar Future

To make long-term presence on the Moon viable, we need abundant electrical power. We can make power systems on the Moon directly from materials that exist everywhere on the surface, without special substances brought from Earth. We have pioneered the technology and demonstrated all the steps. Our approach, Blue Alchemist, can scale indefinitely, eliminating power as a constraint anywhere on the Moon.

We start by making regolith simulants that are chemically and mineralogically equivalent to lunar regolith, accounting for representative lunar variability in grain size and bulk chemistry. This ensures our starting material is as realistic as possible, and not just a mixture of lunar-relevant oxides. We have developed and qualified an efficient, scalable, and contactless process for melting and moving molten regolith that is robust to natural variations in regolith properties on the Moon.

Using regolith simulants, our reactor produces iron, silicon, and aluminum through molten regolith electrolysis, in which an electrical current separates those elements from the oxygen to which they are bound. Oxygen for propulsion and life support is a byproduct.

New Mars photo reveals scars from Red Planet’s ancient past

The European Space Agency’s Mars Express spacecraft captured a stunning new view of the Red Planet’s complex surface geology.

The new image, taken using the orbiter’s High Resolution Stereo Camera (HRSC), focuses on the flanks of a vast volcanic plateau called Thaumasia Planum. Deep surface fractures and water-carved valleys stream down the side of this volcanic region, offering clues about Mars’ ancient past.

/* */